Science of the Total Environment ( IF 8.2 ) Pub Date : 2022-09-11 , DOI: 10.1016/j.scitotenv.2022.158710 Qi Li 1 , Weifang Hu 1 , Linfeng Li 1 , Yichun Li 1
Iron (Fe) oxides are widely recognized to prevent the degradation of organic matter (OM) in environments, thereby promoting the persistence of organic carbon (OC) in soils. Thus, discerning the association mechanisms of Fe oxides and OC interactions is key to effectively influencing the dynamics and extent of organic C cycling in soils. Previous studies have focused on i) quantifying Fe oxide-bound organic carbon (Fe-OC) in individual environments, ii) investigating the distribution and adsorption capacity of Fe-OC, and iii) assessing the redox cycling and transformation of Fe-OC. Furthermore, the widespread application of high-tech instrumentation and methods has greatly contributed to a better understanding of the mechanism of organic mineral assemblages in the past few decades. However, few literature reviews have comprehensively summarized Fe-OC distributions, associations, and characteristics in soil-plant systems. Here, studies investigating the Fe-OC contents among different environments are reviewed. In addition, the mechanisms and processes related to OM transformation dynamics occurring at mineral-organic interfaces are also described. Recent studies have highlighted that diverse interactions occur between Fe oxides and OC, with organic compounds adhering to Fe oxides due to their huge specific surfaces area and active reaction sites. Moreover, we also review methods for understanding Fe-OC interactions at micro-interfaces. Lastly, developmental prospects for understanding coupled Fe-OC geochemical processes in soil environments at molecular- and nano-scales are outlined. The summary suggests that combined advanced techniques and methods should be used in future research to explore micro-interfaces and in situ descriptions of organic mineral assemblages. This review also suggests that future studies need to consider the functional and spatial complexity that is typical of soil/sediment environments where Fe-OC interactions occur.
中文翻译:
土壤微界面有机质与铁氧化物的相互作用:量化、关联和影响因素
铁 (Fe) 氧化物被广泛认为可以防止环境中有机物 (OM) 的降解,从而促进有机碳 (OC) 在土壤中的持久性。因此,辨别 Fe 氧化物和 OC 相互作用的关联机制是有效影响土壤中有机碳循环的动态和程度的关键。以前的研究主要集中在 i) 量化单个环境中的 Fe 氧化物结合有机碳 (Fe-OC),ii) 研究 Fe-OC 的分布和吸附能力,以及 iii) 评估 Fe-OC 的氧化还原循环和转化。此外,高科技仪器和方法的广泛应用在过去几十年极大地促进了对有机矿物组合机制的更好理解。然而,很少有文献综述全面总结了土壤-植物系统中 Fe-OC 的分布、关联和特征。在此,回顾了调查不同环境中 Fe-OC 含量的研究。此外,还描述了与发生在矿物-有机界面的 OM 转化动力学相关的机制和过程。最近的研究强调,Fe 氧化物和 OC 之间会发生多种相互作用,有机化合物由于其巨大的比表面积和活性反应位点而粘附在 Fe 氧化物上。此外,我们还回顾了理解微界面处 Fe-OC 相互作用的方法。最后,概述了在分子和纳米尺度上理解土壤环境中耦合的 Fe-OC 地球化学过程的发展前景。总结表明,在未来的研究中应结合先进的技术和方法来探索微界面和有机矿物组合的原位描述。该综述还表明,未来的研究需要考虑功能和空间复杂性,这是发生 Fe-OC 相互作用的土壤/沉积物环境的典型特征。