当前位置: X-MOL 学术Annu. Rev. Condens. Matter Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enzymes as Active Matter
Annual Review of Condensed Matter Physics ( IF 14.3 ) Pub Date : 2021-03-10 , DOI: 10.1146/annurev-conmatphys-061020-053036
Subhadip Ghosh 1 , Ambika Somasundar 2 , Ayusman Sen 1, 2
Affiliation  

Nature has designed multifaceted cellular structures to support life. Cells contain a vast array of enzymes that collectively perform essential tasks by harnessing energy from chemical reactions. Despite the complexity, intra- and intercellular motility at low Reynolds numbers remain the epicenter of life. In the past decade, detailed investigations on enzymes that are freely dispersed in solution have revealed concentration-dependent enhanced diffusion and chemotactic behavior during catalysis. Theoretical calculations and simulations have determined the magnitude of the impulsive force per turnover; however, an unequivocal consensus regarding the mechanism of enhanced diffusion has not been reached. Furthermore, this mechanical force can be transferred from the active enzymes to inert particles or surrounding fluid, thereby providing a platform for the design of biomimetic systems. Understanding the factors governing enzyme motion would help us to understand organization principles for dissipative self-assembly and the fabrication of molecular machines. The purpose of this article is to review the different classes of enzyme motility and discuss the possible mechanisms as gleaned from experimental observations and theoretical modeling. Finally, we focus on the relevance of enzyme motion in biology and its role in future applications.

中文翻译:


酶作为活性物质

大自然设计了多方面的细胞结构来维持生命。细胞包含大量酶,这些酶通过利用化学反应产生的能量共同执行基本任务。尽管很复杂,但雷诺数低时的细胞内和细胞间运动仍然是生命的中心。在过去的十年中,对自由分散在溶液中的酶的详细研究表明,在催化过程中浓度依赖于增强的扩散和趋化行为。理论计算和模拟确定了每翻转的冲击力的大小。然而,关于增强扩散的机制尚未达成明确共识。此外,这种机械力可以从活性酶转移到惰性颗粒或周围的液体中,从而为仿生系统的设计提供了平台。了解控制酶运动的因素将有助于我们理解耗散自组装和分子机器制造的组织原理。本文的目的是回顾不同类型的酶运动性,并讨论从实验观察和理论建模中得出的可能机制。最后,我们关注酶运动在生物学中的相关性及其在未来应用中的作用。本文的目的是回顾不同类型的酶运动性,并讨论从实验观察和理论建模中得出的可能机制。最后,我们关注酶运动在生物学中的相关性及其在未来应用中的作用。本文的目的是回顾不同类型的酶运动性,并讨论从实验观察和理论建模中得出的可能机制。最后,我们关注酶运动在生物学中的相关性及其在未来应用中的作用。

更新日期:2021-03-10
down
wechat
bug