全氟烷基酸(PFAAs)由于其独特的物理化学特性(例如疏水性,疏油性,表面活性和热稳定性)而广泛用于工业生产和日常生活中。由于全氟磺酸(PFSA)和全氟羧酸(PFCA)的全球发生率,它们是研究最多的PFAA。PFAA具有环境持久性,毒性,并且长链同源物也具有生物蓄积性。暴露于PFAA可能直接来自排放,也可能通过环境释放和PFAA前体的降解间接产生。前体本身或其转化中间体会产生有害作用,包括肝毒性,生殖毒性,发育毒性和遗传毒性。因此,暴露于PFAA前体会对环境污染构成潜在危害。为了全面评估PFAA前体的环境命运和影响以及它们与PFSA和PFCA的联系,我们回顾了过去十年中对微生物菌株,活性污泥,植物和earth进行的环境生物降解性研究。特别是,我们回顾了基于全氟辛基磺酰胺的前体,包括全氟辛烷磺酰胺(FOSA)及其N-乙基衍生物(EtFOSA),N-乙基全氟辛烷磺酰胺基乙醇(EtFOSE)和基于EtFOSE的磷酸二酯(DiSAmPAP)。还审查了基于氟调聚物的前体,包括氟调聚物醇(FTOH),氟调聚物磺酸盐(FTSA)及其一系列转化产物。尽管目前关于两性离子PFAS前体的信息有限,但也对6:2氟调聚物磺酰胺甜菜碱(FTAB)的可用数据进行了初步审查。此外,我们更新和完善了有关生物转化策略的最新知识,重点是参与PFAA前体生物转化的代谢途径和机制。PFAA前体的生物转化主要涉及碳-氟(CF)键的裂解和非氟官能团的降解,包括氧化,脱烷基和脱氟,从而形成较短链的PFAA。在现有研究的基础上,提出了PFAA前体生物转化的当前问题和未来的研究方向。还进行了2-氟调聚物磺酰胺甜菜碱(FTAB)的制备。此外,我们更新和完善了有关生物转化策略的最新知识,重点是与PFAA前体生物转化有关的代谢途径和机制。PFAA前体的生物转化主要涉及碳-氟(CF)键的裂解和非氟官能团的降解,包括氧化,脱烷基和脱氟,从而形成较短链的PFAA。在现有研究的基础上,提出了PFAA前体生物转化的当前问题和未来的研究方向。还进行了2-氟调聚物磺酰胺甜菜碱(FTAB)的制备。此外,我们更新和完善了有关生物转化策略的最新知识,重点是与PFAA前体生物转化有关的代谢途径和机制。PFAA前体的生物转化主要涉及碳-氟(CF)键的裂解和非氟官能团的降解,包括氧化,脱烷基和脱氟,从而形成较短链的PFAA。在现有研究的基础上,提出了PFAA前体生物转化的当前问题和未来的研究方向。PFAA前体的生物转化主要涉及碳-氟(CF)键的裂解和非氟官能团的降解,包括氧化,脱烷基和脱氟,从而形成较短链的PFAA。在现有研究的基础上,提出了PFAA前体生物转化的当前问题和未来的研究方向。PFAA前体的生物转化主要涉及碳-氟(CF)键的裂解和非氟官能团的降解,包括氧化,脱烷基和脱氟,从而形成较短链的PFAA。在现有研究的基础上,提出了PFAA前体生物转化的当前问题和未来的研究方向。
"点击查看英文标题和摘要"
Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives
Perfluoroalkyl acids (PFAAs) are widely used in industrial production and daily life because of their unique physicochemical properties, such as their hydrophobicity, oleophobicity, surface activity, and thermal stability. Perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs) are the most studied PFAAs due to their global occurrence. PFAAs are environmentally persistent, toxic, and the long-chain homologs are also bioaccumulative. Exposure to PFAAs may arise directly from emission or indirectly via the environmental release and degradation of PFAA precursors. Precursors themselves or their conversion intermediates can present deleterious effects, including hepatotoxicity, reproductive toxicity, developmental toxicity, and genetic toxicity. Therefore, exposure to PFAA precursors constitutes a potential hazard for environmental contamination. In order to comprehensively evaluate the environmental fate and effects of PFAA precursors and their connection with PFSAs and PFCAs, we review environmental biodegradability studies carried out with microbial strains, activated sludge, plants, and earthworms over the past decade. In particular, we review perfluorooctyl-sulfonamide-based precursors, including perfluroooctane sulfonamide (FOSA) and its N-ethyl derivative (EtFOSA), N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE), and EtFOSE-based phosphate diester (DiSAmPAP). Fluorotelomerization-based precursors are also reviewed, including fluorotelomer alcohols (FTOH), fluorotelomer sulfonates (FTSA), and a suite of their transformation products. Though limited information is currently available on zwitterionic PFAS precursors, a preliminary review of data available for 6:2 fluorotelomer sulfonamide betaine (FTAB) was also conducted. Furthermore, we update and refine the recent knowledge on biotransformation strategies with a focus on metabolic pathways and mechanisms involved in the biotransformation of PFAA precursors. The biotransformation of PFAA precursors mainly involves the cleavage of carbon-fluorine (C-F) bonds and the degradation of non-fluorinated functional groups via oxidation, dealkylation, and defluorination to form shorter-chained PFAAs. Based on the existing research, the current problems and future research directions on the biotransformation of PFAA precursors are proposed.