2035
当前位置: 首页   >  成果及论文
成果及论文

典型研究成果选摘:

(1)计算流体力学、计算热质传递学

多相流及多相反应器的计算流体力学模拟(Chem Eng Sci, 2021, 229, 116147; AIChE J, 2023, 69, e18209)

典型文章链接:https://pubs.acs.org/doi/10.1021/acs.iecr.2c01036


                   

                                     气固两相流高精度细网格模拟(Chem Eng Sci, 2019, 204, 228-245

                                             文章链接:https://doi.org/10.1016/j.ces.2019.04.026


颗粒尺度解析CFD-DEM模拟及介尺度气固相间传热滤波建模(AIChE J, 2020, 67(4), e17121)

文章链接:https://aiche.onlinelibrary.wiley.com/doi/10.1002/aic.17121


颗粒尺度解析CFD-DEM模拟流化床聚合反应器内颗粒间搭桥粘结现象(Chem Eng Sci, 2023, 118437)

文章链接:https://www.sciencedirect.com/science/article/pii/S0009250922010223


(2)AI辅助的多尺度智能建模与优化

多相体系中融合机理和AI的数字孪生平台(Ind Eng Chem Res, 2022, 61, 9901, ESI高被引)


机器学习与计算流体力学集成耦合(Chem Eng Sci, 2022, 248, 117268; AIChE J, 2020, 66, e16973)

典型文章链接:https://aiche.onlinelibrary.wiley.com/doi/10.1002/aic.16973


机器学习辅助气固两相流介尺度颗粒动理学建模(AIChE J, 2021, e17290)

文章链接:https://aiche.onlinelibrary.wiley.com/doi/10.1002/aic.17290


一种基于机器学习和遗传算法的混合方法,辅助固定床反应器多目标性能优化(AIChE J, 2024, e18520)

典型文章链接:https://aiche.onlinelibrary.wiley.com/doi/10.1002/aic.18520


(3)反应器设计与放大、催化剂理性设计、传递与反应过程强化

气固流化床反应器内构件设计及放大效应初步研究(Chem Eng Sci, 2022, 253, 117547)

文章链接:https://www.sciencedirect.com/science/article/pii/S0009250922001312


CFD辅助生物质热裂解提升管反应器设计(Chem Eng J, 2021, 131048)

文章链接:https://www.sciencedirect.com/science/article/pii/S1385894721026309


固定床反应器催化剂颗粒几何结构研究(AIChE J, 2024, e18520)


加入交大之后:

33、Ya-Nan Yang, Jian-Peng Han, Yan-Peng Ma, Li-Tao Zhu*, Yin-Ning Zhou*, Zheng-Hong Luo*. Modeling and analysis of polypropylene copolymer properties and pressure stability for integrated tubular loop reactor and MZCR. Chem. Eng. Sci., 2024, 120657. https://doi.org/10.1016/j.ces.2024.120657

组合反应器(集成环管和多区循环反应器)内聚丙烯共聚物性能和压力稳定性的建模与分析

加入交大之前: 

学术论文 (Academic   link: Google Scholar;  Scopus;  Orcid)

32

Zhu L.T., Kenig E.*,   A study of methanol-to-olefins packed bed reactor performance using particle-resolved   CFD and machine learning. AIChE J., 2024.

31

Zhu L.T., Kenig E.*,   Multi-objective optimization of fixed bed reactor performance for hydrogen   production via water-gas shift reaction. To be submitted to Chem. Eng. Sci.

30

Li G., Guan   S., Gao Y., Liu W., Zheng Y., Pan H.*, Zhu L.T. *, Ling, H.*,   Evaluation of multi-objective optimization methods applied to ternary   dividing-wall columns. Chem.   Eng. Res. Des.2024, 203, 573-582.

29

Zhu L.T., Wachs   A.*, Interpolation of   probability-driven model to predict hydrodynamic forces and torques in particle-laden   flows. AIChE J.2023, 69(11), e18209.

28

Zhu L.T., Lei H., Ouyang B., Wen Z.Q., Yang Y.Y., Luo Z.H.*, Optimizing   injection modes and reactor shapes in gas-particle fluidized beds using a   mesoscale CFD model. Powder Technol.2023, 118941.

27

Zhu L.T., Lei H.,   Ouyang B., Luo Z.H.*, Using mesoscale drag model-augmented coarse-grid   simulation to design fluidized bed reactor: Effect of bed internals and   sizes. Chem. Eng. Sci., 2022,   253, 117547.

26

Zhu L.T., Chen X.Z., Ouyang B., Yan W.C., Lei H., Chen Z., Luo Z.H.*, Review of machine learning for hydrodynamics, transport and reactions   in multiphase flows and reactors. Ind. Eng. Chem. Res.2022,   61(28), 9901-9949. (ESI高被引论文)

25

Zhu L.T., Ouyang B., Lei   H., Luo Z.H.*, Conventional and data-driven modeling of mesoscale drag, heat   transfer and reaction rate in gas-particle flows. AIChE J.2021, e17299. (AIChE J. 2021-2022高被引论文)

24

Zhu L.T., Tang J.X., Luo Z.H.*, Machine learning   to assist filtered two-fluid model development for dense gas-particle flows. AIChE J.2020, 66(6), e16973.

23

Zhu L.T., Chen, X.Z., Luo, Z.H.*, Analysis and development of homogeneous drag closure for filtered   mesoscale modeling of fluidized gas-particle flows. Chem. Eng. Sci.2021, 229, 116147.

22

Zhu L.T.,   Yang, Y.N., Pan, D.T.*, Luo, Z.H.*, Capability assessment of coarse-grid simulation of gas-particle   riser flow using sub-grid drag closures. Chem. Eng. Sci., 2020, 213, 115410.

21

Zhu L.T., Liu Y.X., Tang J.X., Luo Z.H.*, A material-property-dependent   sub-grid drag model for coarse-grained simulation of 3D large-scale CFB   risers. Chem. Eng. Sci.2019, 204, 228.

20

Zhu L.T.,   Rashid T.A.B., Luo Z.H.*, Comprehensive validation analysis of sub-grid drag   and wall corrections for coarse-grid two-fluid modeling. Chem. Eng. Sci., 2019,   196, 478-492.

19

Zhu L.T.,   Y.X. Liu, Luo Z.H.*, An enhanced correlation for gas-particle heat and mass   transfer in packed and fluidized bed reactors. Chem. Eng. J., 2019, 374, 531-544.

18

Zhu L.T., Liu Y.X., Luo Z.H.*, An effective three-marker drag   model via sub-grid modeling for turbulent fluidization. Chem. Eng. Sci.2018,   192, 759-773.

17

Zhu L.T., Ma W.Y., Luo Z.H.*, Influence of distributed pore   size and porosity on MTO catalyst particle performance: Modeling and   simulation. Chem. Eng. Res. Des.2018,137, 141-153.

16

Zhu L.T., Pan H., Su Y.H., Luo Z.H.*, Effect of particle polydispersity on   flow and reaction behaviors of methanol to olefins fluidized bed reactors. Ind. Eng. Chem.   Res.2017,   56, 1090-1102.

15

Zhu L.T., Xie L., Xiao J., Luo Z.H.*, Filtered model for the   cold-model gas-solid flow in a large-scale MTO fluidized bed reactor. Chem. Eng. Sci.2016,   143, 369-383.

14

Zhu L.T., Ye M., Luo Z.H.*, Application of filtered model for   reacting gas-solid flows and optimization in a large-scale methanol-to-olefin   fluidized-bed reactor. Ind. Eng. Chem. Res.2016, 55, 11887-11899.

13

Zhu L.T., F. Xu, H.   Jin, Q. Xiong*. Multiphase flow in   energy studies and applications—A special issue for MTCUE-2022. Phys.   Fluid.2023,   35(7), 070401.

12

Ouyang B., Zhu   L.T.*, Luo Z.H.*, Data-driven modeling of mesoscale solids stress closures   for filtered two-fluid model in gas-particle flows. AIChE J.2021,   e17290.

11

Lei, H., Zhu L.T.*, Luo Z.H.*, Study of filtered   interphase heat transfer using highly resolved CFD–DEM simulations. AIChE J.2021, 67(4), e17121.

10

Lei H., Zhu L.T.*, Luo Z.H.*, CFD-DEM study of   reactive gas-solid flows with cohesive particles in a high temperature   polymerization fluidized bed. Chem. Eng. Sci.2023, 268, 118437.

9

Chen Z., Zhu L.T.*, Luo Z.H.*, Characterizing   flow and transport in biological vascular systems: A review from physiological   and chemical engineering perspectives. Ind. Eng. Chem. Res.2023, 63(1),   4-36.

8

Li J.S., Zhu L.T.*Luo Z.H.*, Effect of geometric   configuration on hydrodynamics, heat transfer and RTD in a pilot-scale   biomass pyrolysis vapor-phase upgrading reactor. Chem. Eng. J., 2022, 428, 131048.

7

Ouyang B., Zhu L.T.*, Luo Z.H.*, Machine learning for full spatiotemporal acceleration of   gas-particle flow simulations. Powder Technol.2022, 408,   117701.

6

Li, J.S., Zhu L.T.*, Yan, W.C., Rashid, T.A.B., Xu, Q.J., Luo Z.H.*, Coarse-grid   simulations of full-loop gas-solid flows using a hybrid drag model:   Investigations on turbulence models. Powder Technol., 2021, 379, 108-126.

5

Rashid T.A.B., Zhu L.T.*, Luo Z.H.*, Effect of granular properties on hydrodynamics in coarse-grid riser   flow simulation of Geldart A and B particles. Powder Technol.2020, 359: 126-144.

4

Rashid T.A.B., Zhu L.T.*, Luo Z.H.*, Comparative   analysis of numerically derived drag models for development of bed expansion   ratio correlation in a bubbling fluidized bed. Adv. Powder   Technol.2020, 31, 2723-2732.

3

Liu Y.X., Zhu   L.T.*, Luo Z.H.*, Tang J.X., Effect of spatial radiation distribution   on photocatalytic oxidation of methylene blue in gas-liquid-solid   mini-fluidized beds. Chem. Eng. J., 2019, 370,   1154-1168.

2

朱礼涛+欧阳博+张希宝罗正鸿*. 机器学习在多相反应器中的应用进展化工进展2021, 40(4), 1699-1714.

1

朱礼涛罗正鸿*. 磁共振成像应用于多相流体动力学研究进展化工学报2018, 69(9), 3765-3773.

发明专利

5

罗正鸿,朱礼涛,魏慧龙,欧阳博,雷赫,闻昭权,张希宝分支型内构件及流化床反应器,ZL202110481299.7

4

邵枫朱礼涛苏言杰罗正鸿张亚非流道结构性能优化模型的训练方法及装置、优化方法、介质及终端. CN202311314449.0

3

罗正鸿张希宝阮诗想朱礼涛一种生产聚烯烃的溶液聚合方法. ZL202210945593.3

2

王齐罗正鸿张宇雷赫宋美丽朱礼涛王林袁炜胡琳王居兰聚烯烃生产装置及调控方法. CN202311076191.5.

1

罗正鸿阮诗想张希宝朱礼涛魏慧龙潘德韬一种生产聚烯烃弹性体的聚合装置和方法. CN115894747A