典型研究成果选摘:
(1)计算流体力学、计算热质传递学
多相流及多相反应器的计算流体力学模拟(Chem Eng Sci, 2021, 229, 116147; AIChE J, 2023, 69, e18209)
典型文章链接:https://pubs.acs.org/doi/10.1021/acs.iecr.2c01036
气固两相流高精度细网格模拟(Chem Eng Sci, 2019, 204, 228-245)
文章链接:https://doi.org/10.1016/j.ces.2019.04.026
颗粒尺度解析CFD-DEM模拟及介尺度气固相间传热滤波建模(AIChE J, 2020, 67(4), e17121)
文章链接:https://aiche.onlinelibrary.wiley.com/doi/10.1002/aic.17121
颗粒尺度解析CFD-DEM模拟流化床聚合反应器内颗粒间搭桥粘结现象(Chem Eng Sci, 2023, 118437)
文章链接:https://www.sciencedirect.com/science/article/pii/S0009250922010223
(2)AI辅助的多尺度智能建模与优化
多相体系中融合机理和AI的数字孪生平台(Ind Eng Chem Res, 2022, 61, 9901, ESI高被引)
机器学习与计算流体力学集成耦合(Chem Eng Sci, 2022, 248, 117268; AIChE J, 2020, 66, e16973)
典型文章链接:https://aiche.onlinelibrary.wiley.com/doi/10.1002/aic.16973
机器学习辅助气固两相流介尺度颗粒动理学建模(AIChE J, 2021, e17290)
文章链接:https://aiche.onlinelibrary.wiley.com/doi/10.1002/aic.17290
一种基于机器学习和遗传算法的混合方法,辅助固定床反应器多目标性能优化(AIChE J, 2024, e18520)
典型文章链接:https://aiche.onlinelibrary.wiley.com/doi/10.1002/aic.18520
(3)反应器设计与放大、催化剂理性设计、传递与反应过程强化
气固流化床反应器内构件设计及放大效应初步研究(Chem Eng Sci, 2022, 253, 117547)
文章链接:https://www.sciencedirect.com/science/article/pii/S0009250922001312
CFD辅助生物质热裂解提升管反应器设计(Chem Eng J, 2021, 131048)
文章链接:https://www.sciencedirect.com/science/article/pii/S1385894721026309
固定床反应器催化剂颗粒几何结构研究(AIChE J, 2024, e18520)
加入交大之后:
33、Ya-Nan Yang, Jian-Peng Han, Yan-Peng Ma, Li-Tao Zhu*, Yin-Ning Zhou*, Zheng-Hong Luo*. Modeling and analysis of polypropylene copolymer properties and pressure stability for integrated tubular loop reactor and MZCR. Chem. Eng. Sci., 2024, 120657. https://doi.org/10.1016/j.ces.2024.120657
组合反应器(集成环管和多区循环反应器)内聚丙烯共聚物性能和压力稳定性的建模与分析
加入交大之前:
学术论文 (Academic link: Google Scholar; Scopus; Orcid) |
|
32 |
Zhu L.T., Kenig E.*, A study of methanol-to-olefins packed bed reactor performance using particle-resolved CFD and machine learning. AIChE J., 2024. |
31 |
Zhu L.T., Kenig E.*, Multi-objective optimization of fixed bed reactor performance for hydrogen production via water-gas shift reaction. To be submitted to Chem. Eng. Sci. |
30 |
Li G., Guan S., Gao Y., Liu W., Zheng Y., Pan H.*, Zhu L.T. *, Ling, H.*, Evaluation of multi-objective optimization methods applied to ternary dividing-wall columns. Chem. Eng. Res. Des., 2024, 203, 573-582. |
29 |
Zhu L.T., Wachs A.*, Interpolation of probability-driven model to predict hydrodynamic forces and torques in particle-laden flows. AIChE J., 2023, 69(11), e18209. |
28 |
Zhu L.T., Lei H., Ouyang B., Wen Z.Q., Yang Y.Y., Luo Z.H.*, Optimizing injection modes and reactor shapes in gas-particle fluidized beds using a mesoscale CFD model. Powder Technol., 2023, 118941. |
27 |
Zhu L.T., Lei H., Ouyang B., Luo Z.H.*, Using mesoscale drag model-augmented coarse-grid simulation to design fluidized bed reactor: Effect of bed internals and sizes. Chem. Eng. Sci., 2022, 253, 117547. |
26 |
Zhu L.T., Chen X.Z., Ouyang B., Yan W.C., Lei H., Chen Z., Luo Z.H.*, Review of machine learning for hydrodynamics, transport and reactions in multiphase flows and reactors. Ind. Eng. Chem. Res., 2022, 61(28), 9901-9949. (ESI高被引论文) |
25 |
Zhu L.T., Ouyang B., Lei H., Luo Z.H.*, Conventional and data-driven modeling of mesoscale drag, heat transfer and reaction rate in gas-particle flows. AIChE J., 2021, e17299. (AIChE J. 2021-2022高被引论文) |
24 |
Zhu L.T., Tang J.X., Luo Z.H.*, Machine learning to assist filtered two-fluid model development for dense gas-particle flows. AIChE J., 2020, 66(6), e16973. |
23 |
Zhu L.T., Chen, X.Z., Luo, Z.H.*, Analysis and development of homogeneous drag closure for filtered mesoscale modeling of fluidized gas-particle flows. Chem. Eng. Sci., 2021, 229, 116147. |
22 |
Zhu L.T., Yang, Y.N., Pan, D.T.*, Luo, Z.H.*, Capability assessment of coarse-grid simulation of gas-particle riser flow using sub-grid drag closures. Chem. Eng. Sci., 2020, 213, 115410. |
21 |
Zhu L.T., Liu Y.X., Tang J.X., Luo Z.H.*, A material-property-dependent sub-grid drag model for coarse-grained simulation of 3D large-scale CFB risers. Chem. Eng. Sci., 2019, 204, 228. |
20 |
Zhu L.T., Rashid T.A.B., Luo Z.H.*, Comprehensive validation analysis of sub-grid drag and wall corrections for coarse-grid two-fluid modeling. Chem. Eng. Sci., 2019, 196, 478-492. |
19 |
Zhu L.T., Y.X. Liu, Luo Z.H.*, An enhanced correlation for gas-particle heat and mass transfer in packed and fluidized bed reactors. Chem. Eng. J., 2019, 374, 531-544. |
18 |
Zhu L.T., Liu Y.X., Luo Z.H.*, An effective three-marker drag model via sub-grid modeling for turbulent fluidization. Chem. Eng. Sci., 2018, 192, 759-773. |
17 |
Zhu L.T., Ma W.Y., Luo Z.H.*, Influence of distributed pore size and porosity on MTO catalyst particle performance: Modeling and simulation. Chem. Eng. Res. Des., 2018,137, 141-153. |
16 |
Zhu L.T., Pan H., Su Y.H., Luo Z.H.*, Effect of particle polydispersity on flow and reaction behaviors of methanol to olefins fluidized bed reactors. Ind. Eng. Chem. Res., 2017, 56, 1090-1102. |
15 |
Zhu L.T., Xie L., Xiao J., Luo Z.H.*, Filtered model for the cold-model gas-solid flow in a large-scale MTO fluidized bed reactor. Chem. Eng. Sci., 2016, 143, 369-383. |
14 |
Zhu L.T., Ye M., Luo Z.H.*, Application of filtered model for reacting gas-solid flows and optimization in a large-scale methanol-to-olefin fluidized-bed reactor. Ind. Eng. Chem. Res., 2016, 55, 11887-11899. |
13 |
Zhu L.T., F. Xu, H. Jin, Q. Xiong*. Multiphase flow in energy studies and applications—A special issue for MTCUE-2022. Phys. Fluid., 2023, 35(7), 070401. |
12 |
Ouyang B., Zhu L.T.*, Luo Z.H.*, Data-driven modeling of mesoscale solids stress closures for filtered two-fluid model in gas-particle flows. AIChE J., 2021, e17290. |
11 |
Lei, H., Zhu L.T.*, Luo Z.H.*, Study of filtered interphase heat transfer using highly resolved CFD–DEM simulations. AIChE J., 2021, 67(4), e17121. |
10 |
Lei H., Zhu L.T.*, Luo Z.H.*, CFD-DEM study of reactive gas-solid flows with cohesive particles in a high temperature polymerization fluidized bed. Chem. Eng. Sci., 2023, 268, 118437. |
9 |
Chen Z., Zhu L.T.*, Luo Z.H.*, Characterizing flow and transport in biological vascular systems: A review from physiological and chemical engineering perspectives. Ind. Eng. Chem. Res., 2023, 63(1), 4-36. |
8 |
Li J.S., Zhu L.T.*, Luo Z.H.*, Effect of geometric configuration on hydrodynamics, heat transfer and RTD in a pilot-scale biomass pyrolysis vapor-phase upgrading reactor. Chem. Eng. J., 2022, 428, 131048. |
7 |
Ouyang B., Zhu L.T.*, Luo Z.H.*, Machine learning for full spatiotemporal acceleration of gas-particle flow simulations. Powder Technol., 2022, 408, 117701. |
6 |
Li, J.S., Zhu L.T.*, Yan, W.C., Rashid, T.A.B., Xu, Q.J., Luo Z.H.*, Coarse-grid simulations of full-loop gas-solid flows using a hybrid drag model: Investigations on turbulence models. Powder Technol., 2021, 379, 108-126. |
5 |
Rashid T.A.B., Zhu L.T.*, Luo Z.H.*, Effect of granular properties on hydrodynamics in coarse-grid riser flow simulation of Geldart A and B particles. Powder Technol., 2020, 359: 126-144. |
4 |
Rashid T.A.B., Zhu L.T.*, Luo Z.H.*, Comparative analysis of numerically derived drag models for development of bed expansion ratio correlation in a bubbling fluidized bed. Adv. Powder Technol., 2020, 31, 2723-2732. |
3 |
Liu Y.X., Zhu L.T.*, Luo Z.H.*, Tang J.X., Effect of spatial radiation distribution on photocatalytic oxidation of methylene blue in gas-liquid-solid mini-fluidized beds. Chem. Eng. J., 2019, 370, 1154-1168. |
2 |
朱礼涛+, 欧阳博+, 张希宝, 罗正鸿*. 机器学习在多相反应器中的应用进展. 化工进展, 2021, 40(4), 1699-1714. |
1 |
朱礼涛, 罗正鸿*. 磁共振成像应用于多相流体动力学研究进展. 化工学报, 2018, 69(9), 3765-3773. |
发明专利 |
|
5 |
罗正鸿,朱礼涛,魏慧龙,欧阳博,雷赫,闻昭权,张希宝. 分支型内构件及流化床反应器,ZL202110481299.7 |
4 |
邵枫, 朱礼涛, 苏言杰, 罗正鸿, 张亚非. 流道结构性能优化模型的训练方法及装置、优化方法、介质及终端. CN202311314449.0 |
3 |
罗正鸿, 张希宝, 阮诗想, 朱礼涛. 一种生产聚烯烃的溶液聚合方法. ZL202210945593.3 |
2 |
王齐, 罗正鸿, 张宇, 雷赫, 宋美丽, 朱礼涛, 王林, 袁炜, 胡琳, 王居兰. 聚烯烃生产装置及调控方法. CN202311076191.5. |
1 |
罗正鸿, 阮诗想, 张希宝, 朱礼涛, 魏慧龙, 潘德韬. 一种生产聚烯烃弹性体的聚合装置和方法. CN115894747A |