5565
当前位置: 首页   >  成果及论文
成果及论文

[1] J. Li, S. Zhan, Q. He, Y. Qiao, F. Zhou, Identifying the two-electron oxygen reduction mechanism on BC3 site in Cl−-containing electrolytes, Journal of Electroanalytical Chemistry 955 (2024) 118065. https://doi.org/10.1016/j.jelechem.2024.118065.

[2] Z. Zhao, Q. He, Y. Qv, F. Zhou, S. Zhan, S, N co-doped carbon dots induced effective chlorine ion repulsion in TiO2 nanorod clusters for photoelectrochemical seawater splitting, International Journal of Hydrogen Energy 51 (2024) 1414–1424. https://doi.org/10.1016/j.ijhydene.2023.09.203.

[3] J. Sun, Y. Chi, W. Wang, S. Zhan, F. Zhou, Study on the mechanism of inactivation of marine microorganisms by IrO2/ZnWO4 composite photocatalyst, Reac Kinet Mech Cat (2023). https://doi.org/10.1007/s11144-023-02551-4.

[4] Q. He, J. Li, Y. Qiao, S. Zhan, F. Zhou, Investigation of two-electron ORR pathway of non-metallic carbon-based catalysts with P-C bond structure in Cl--bearing electrolytes, Applied Catalysis B: Environmental 339 (2023) 123087. https://doi.org/10.1016/j.apcatb.2023.123087.

[5] Y. Qv, R. Xv, Q. He, Z. Zhao, F. Zhou, S. Zhan, Effect of chlorine-repulsive molecular fragments on photocatalytic seawater splitting performance of BiVO4 for oxygen evolution, International Journal of Hydrogen Energy 48 (2023) 8943–8953. https://doi.org/10.1016/j.ijhydene.2022.12.098.

[6] R. Xu, Y. Qu, Z. Zhao, Y. Wang, M. Li, F. Zhou, NiS Protective Layer for Repelling Chloride Ion Effectively for Water Oxidation on Photocatalytic Seawater Splitting, ACS Appl. Energy Mater. 6 (2023) 2618–2623. https://doi.org/10.1021/acsaem.3c00116.

[7] C. Zhang, Q. He, S. Zhan, F. Zhou, Photocatalytic hydrogen peroxide production in natural seawater by AgQDs(0D)/Bi2O3(3D) hybrid structure for in-situ bacterial inactivation, Journal of Photochemistry and Photobiology A: Chemistry 435 (2023) 114293. https://doi.org/10.1016/j.jphotochem.2022.114293.

[8] Y. Wang, F. Zhou, S. Zhan, J. Sun, R. Xu, Study on inactivation of marine microorganisms by AgI/ Bi2O2CO3 composite photocatalyst, Reac Kinet Mech Cat 136 (2023) 535–548. https://doi.org/10.1007/s11144-022-02341-4.

[9] M. Li, F. Zhou, S. Zhan, Effects of hydroxyl groups on the surface of zinc stannate on the photocatalytic inactivation of marine microorganisms, Reac Kinet Mech Cat 135 (2022) 2195–2205. https://doi.org/10.1007/s11144-022-02243-5.

[10] F. Wang, S. Zhan, F. Zhou, Q. He, C. Zhang, J. Lai, Y. Song, In-situ synthesis of Bi0 on 3D-3D-shaped (BiO)2CO3 surface for photocatalytic inactivation: Metal self-doping mechanism, Journal of Environmental Chemical Engineering 10 (2022) 107576. https://doi.org/10.1016/j.jece.2022.107576.

[11] Q. He, S. Zhan, F. Zhou, A Tandem Reaction System for Inactivation of Marine Microorganisms by Commercial Carbon Black and Boron-Doped Carbon Nitride, ACS Omega 7 (2022) 16524–16535. https://doi.org/10.1021/acsomega.2c00679.

[12] F. Wang, Y. Song, Q. He, C. Zhang, J. Lai, S. Zhan, F. Zhou, Performance tuning and optimisation of 2D–2D-like g-C3N4 modified Bi2O2CO3 n–n homotypic heterojunction as an inactivating photocatalytic material, Journal of Environmental Chemical Engineering 9 (2021) 106176. https://doi.org/10.1016/j.jece.2021.106176.

[13] C. Zhang, Y. Song, Q. He, F. Wang, S. Zhan, F. Zhou, H2O2-assisted photocatalysis induced by SPR of BiQDs anchored on BiVO4 for the production of hydroxyl radicals in seawater, Journal of Environmental Chemical Engineering 9 (2021) 105973. https://doi.org/10.1016/j.jece.2021.105973.

[14] F. Wang, F. Zhou, S. Zhan, Q. He, Y. Song, C. Zhang, J. Lai, Morphology modulation and performance optimization of nanopetal-based Ag-modified Bi2O2CO3 as an inactivating photocatalytic material, Environmental Research 198 (2021) 111256. https://doi.org/10.1016/j.envres.2021.111256.

[15] Y. Song, F. Zhou, Y. Chai, S. Zhan, Study on high antibacterial RGO/Bi2WO6 microspheres combined with PEVE coating for marine sterilization under visible light, Res Chem Intermed 47 (2021) 2297–2310. https://doi.org/10.1007/s11164-021-04400-2.

[16] P. Xing, F. Zhou, S. Zhan, Catalytic conversion of seawater to fuels: Eliminating N vacancies in g-C3N4 to promote photocatalytic hydrogen production, Environmental Research 197 (2021) 111167. https://doi.org/10.1016/j.envres.2021.111167.

[17] N. Su, F. Zhou, Study of BiOI/BiOIO3 composite photocatalyst for improved sterilization performance of fluorocarbon resin coating (PEVE), Chemical Physics Letters 766 (2021) 138329. https://doi.org/10.1016/j.cplett.2021.138329.

[18] Y. Song, F. Zhou, Antifouling properties of PEVE coating modified by BiVO4/BiOIO3 composite photocatalyst, Appl. Phys. A 126 (2020) 541. https://doi.org/10.1007/s00339-020-03717-w.

[19] Z. Li, F. Zhou, Synthesis of g-C3N4/BiVO4 and Its Photocatalytic Performance for Hydrogen Production, Arab J Sci Eng 45 (2020) 4659–4667. https://doi.org/10.1007/s13369-020-04399-5.

[20] Z. Zhu, F. Zhou, S. Zhan, Enhanced antifouling property of fluorocarbon resin coating (PEVE) by the modification of g-C3N4/Ag2WO4 composite step-scheme photocatalyst, Applied Surface Science 506 (2020) 144934. https://doi.org/10.1016/j.apsusc.2019.144934.

[21] Y. Li, F. Zhou, Synthesizing ZnWO4 with enhanced performance in photoelectrocatalytic inactivating marine microorganisms, Applied Surface Science 496 (2019) 143645. https://doi.org/10.1016/j.apsusc.2019.143645.

[22] P. Xing, F. Zhou, Z. Li, Preparation of WO3/g-C3N4 composites with enhanced photocatalytic hydrogen production performance, Appl. Phys. A 125 (2019) 788. https://doi.org/10.1007/s00339-019-3094-7.

[23] F. Wu, F. Zhou, Z. Zhu, S. Zhan, Q. He, Enhanced photocatalytic activities of Ag3PO4/GO in tetracycline degradation, Chemical Physics Letters 724 (2019) 90–95. https://doi.org/10.1016/j.cplett.2019.03.058.

[24] Y. Li, F. Zhou, Z. Zhu, F. Wu, Inactivating marine microorganisms for photoelectrocatalysis by ZnWO4 electrode obtained by surfactant-assisted synthesis, Applied Surface Science 467–468 (2019) 819–824. https://doi.org/10.1016/j.apsusc.2018.10.186.

[25] Y.H. Chai, F. Zhou, Z. Zhu, High-efficiency and environment-friendly sterilization PEVE coatings modified with Bi2WO6/TiO2 composites, Chemical Physics Letters 715 (2019) 173–180. https://doi.org/10.1016/j.cplett.2018.11.046.

[26] Z. Zhu, F. Zhou, S. Zhan, N. Huang, Q. He, Enhancement of g-C3N4 cathode for inactivation of marine microorganisms in ZnWO4 photocatalytic system, Applied Surface Science 456 (2018) 156–163. https://doi.org/10.1016/j.apsusc.2018.06.063.

[27] Q. He, F. Zhou, S. Zhan, N. Huang, Y. Tian, Photoassisted oxygen reduction reaction on mpg-C 3 N 4 : The effects of elements doping on the performance of ORR, Applied Surface Science 430 (2018) 325–334. https://doi.org/10.1016/j.apsusc.2017.06.306.

[28] Z. Zhu, F. Zhou, S. Zhan, Y. Tian, Q. He, Study on the bactericidal performance of graphene/TiO2 composite photocatalyst in the coating of PEVE, Applied Surface Science 430 (2018) 116–124. https://doi.org/10.1016/j.apsusc.2017.07.289.

[29] F. Wu, F. Zhou, S. Zhan, Q. He, Y. Tian, Z. Zhu, Enhanced photocatalytic activities of SnO2 by graphene oxide and its application in antibacterial, Opt Quant Electron 50 (2018) 9. https://doi.org/10.1007/s11082-017-1274-2.

[30] Y. Tian, F. Zhou, S. Zhan, Z. Zhu, Q. He, Mechanisms on the enhanced sterilization performance of fluorocarbon resin composite coatings modified by g-C3N4/Bi2MoO6 under the visible-light, Journal of Photochemistry and Photobiology A: Chemistry 350 (2018) 10–16. https://doi.org/10.1016/j.jphotochem.2017.09.043.

[31] S. Zhan, F. Zhou, N. Huang, Q. He, Y. Zhu, Deactivating harmful marine microorganisms through photoelectrocatalysis by GO/ZnWO4 electrodes, Chemical Engineering Journal 330 (2017) 635–643. https://doi.org/10.1016/j.cej.2017.08.002.

[32] Y. Liu, F. Zhou, S. Zhan, Y. Yang, Preparation of Ag/AgBr–Bi2MoO6 Plasmonic Photocatalyst Films with Highly Enhanced Photocatalytic Activity, J Inorg Organomet Polym 27 (2017) 1365–1375. https://doi.org/10.1007/s10904-017-0590-0.

[33] S. Zhan, F. Zhou, N. Huang, Y. Liu, Q. He, Y. Tian, Y. Yang, F. Ye, Synthesis of ZnWO4 Electrode with tailored facets: Deactivating the Microorganisms through Photoelectrocatalytic methods, Applied Surface Science 391 (2017) 609–616. https://doi.org/10.1016/j.apsusc.2016.06.137.

[34] Y. Yang, F. Zhou, S. Zhan, Y. Liu, Y. Tian, Q. He, Facile preparation of BiOCl x I1−x composites with enhanced visible-light photocatalytic activity, Appl. Phys. A 123 (2017) 29. https://doi.org/10.1007/s00339-016-0648-9.

[35] Y. Tian, F. Zhou, S. Zhan, Y. Yang, Y. Liu, Q. He, Mechanisms on the Sterilization Performance of Fluorocarbon Resin Composite Coatings Enhanced by g-C3N4/TiO2, J Inorg Organomet Polym 27 (2017) 353–362. https://doi.org/10.1007/s10904-016-0478-4.

[36] Q. He, F. Zhou, S. Zhan, Y. Yang, Y. Liu, Y. Tian, N. Huang, Enhancement of photocatalytic and photoelectrocatalytic activity of Ag modified Mpg-C 3 N 4 composites, Applied Surface Science 391 (2017) 423–431. https://doi.org/10.1016/j.apsusc.2016.07.005.

[37] Y. Yin, F. Zhou, S. Zhan, Y. Yang, Y. Liu, Study on the mechanism of the photodegradation of methylene blue on Bi2MoO6/BiPO4 catalysts: different molar ratios and pH values, Reac Kinet Mech Cat 118 (2016) 425–437. https://doi.org/10.1007/s11144-016-1007-8.

[38] Y. Liu, F. Zhou, S. Zhan, Y. Yang, Y. Yin, Significantly enhanced performance of g-C3N4/Bi2MoO6 films for photocatalytic degradation of pollutants under visible-light irradiation, Chem. Res. Chin. Univ. 32 (2016) 284–290. https://doi.org/10.1007/s40242-016-5315-3.

[39] Y. Yang, F. Zhou, S. Zhan, Y. Liu, Y. Yin, Enhanced Photocatalytic Activity of BiOCl Hybridized with g-C3N4, J Inorg Organomet Polym 26 (2016) 91–99. https://doi.org/10.1007/s10904-015-0279-1.

[40] S. Zhan, F. Zhou, N. Huang, Y. Yang, Y. Liu, Y. Yin, Y. Fang, g-C3N4/ZnWO4 films: Preparation and its enhanced photocatalytic decomposition of phenol in UV, Applied Surface Science 358 (2015) 328–335. https://doi.org/10.1016/j.apsusc.2015.07.180.

[41] S. Zhan, F. Zhou, N. Huang, Y. Yin, M. Wang, Y. Yang, Y. Liu, Sonochemical synthesis of Zn3V2O7(OH)2(H2O)2 and g-C3N4/Zn3V2O7(OH)2(H2O)2 with high photocatalytic activities, Journal of Molecular Catalysis A: Chemical 401 (2015) 41–47. https://doi.org/10.1016/j.molcata.2015.02.019.