33815
当前位置: 首页   >  成果及论文
成果及论文


2024年发表论文

[1] Cheng Y., Ding C., Zhang T. L.*,Wang R., Mu R. X., Li Z. Y., Li R. R., Shi Q., Zhu C. Q.*,  Barrierless reactions of C2 Criegee intermediates with H2SO4 and their implication to oligomers and new particle formationJ. Environ. Sci., 2025, 149, 574-584., https://www.sciencedirect.com/science/article/abs/pii/S1001074223005715

[2] Wang R., Cheng Y., Chen S. S.., Li R., R., Hu Y., Guo X. K., Zhang T. L.*, Song F. M., Li H.*, Reaction of SO3 with H2SO4  and its implications for aerosol particle formation in the gas phase and at the air-water interface. Atmos. Chem. Phys., 2024, 24, 4029-4046. https://acp.copernicus.org/articles/24/4029/2024/

[3] Ding C., Wen M. J., Zhang T. L.*, Li Z. Y., Li R. R., Y., Wang R.*, Ou T., Song F. M., Zhang Q., Molecular Mechanisms and Atmospheric Implications of the Simplest Criegee Intermediate and Hydrochloric Acid Chemistry in the Gas Phase and at the Aqueous Interfaces.Atmos. Environ., 2024, 330, 120558.  https://doi.org/10.1016/j.atmosenv.2024.120558

2023年发表论文

[1] Ding C., Cheng Y., Wang H., Yang J. H., Li Z. Y., Makroni L.*, Wang R., Zhang T. L.*, Determination of the influence of water on the SO3 + CH3OH reaction in the gas phase and at the air-water interface. Phys. Chem. Chem. Phys., 2023, 25, 15693. hot paper,  https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp01245j

[2] Cheng Y., Ding C., Wang H., Zhang T. L.*, Wang R., B. Muthiah, Xu H. T., Jiang M., Significant influence of water molecule on the SO3 + HCl reaction in the gas phase and at the air-water interface. Phys. Chem. Chem. Phys., 2023, 25, 28885-28894. https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03172a/

[3] Hu Y., Chen S. S., Ye S. S., Wei S. Q., Chu B. W., Wang R.*, Li H., Zhang T. L., The role of trifluoroacetic acid in new particle formation from methanesulfonic acid-methylamine. Atmos. Environ., 2023, 311, 120001. https://www.sciencedirect.com/science/article/abs/pii/S1352231023004272

[4] Zhang Y. Q., Wang Z. H., Wang H., Cheng Y., Zhang T. L.*, Ou T., Atmospheric chemistry of NH2SO3H in polluted areas: An unexpected isomerization of NH2SO3H in acid-polluted regions, J. Phys. Chem. A 2023, 127(42), 8935-8942.  https://pubs.acs.org/doi/10.1021/acs.jpca.3c04982 

[5] Mu R. X., Zhou W. X., Hong Z. Z., Wang R., Liu Q., Zhang Q., Jiang M., Muthiah B., Zhang T. L.*, A possible atmospheric source of HNO3: the ammonolysis reaction of t-N2O4 in the presence of water monomer, water dimer, and sulfuric acid. Environ. Sci.: Atmos., 2023https://doi.org/10.1039/D3EA00095H

2022年发表论文

[1]  Zhang T. L.,* Zhang Y. Q., Tian S. Y., Zhou M., Liu D., Lin L., Zhang Q., Wang R., B. Muthiah, Possible atmospheric source of NH2SO3H: the hydrolysis of HNSO2 in the presence of neutral, basic and acidic catalysts., Phys. Chem. Chem. Phys.2022, 24, 4966. https://pubs.rsc.org/en/content/articlelanding/2022/cp/d1cp04437k#!

[2] Wen M. J., Li R. R., ZhangT. L.,* Ding C., Hu Y., Mu R. X., Liang M., Ou T., Long B.*, A potential source of tropospheric secondary organic aerosol precursors: The hydrolysis of N2O5 in water dimer and small clusters of sulfuric acid, Atmos. Environ.2022, 287, 119245. https://www.sciencedirect.com/science/article/abs/pii/S1352231022003107

[3] Zhang Y. Q., Cheng Y., ZhangT. L.,*, Wang R., Ji J. W., Xia Y., Makroni L., Wang Z. Q., Muthiah B., A computational study of the HO2 + SO3 → HOSO2 + 3O2 reaction catalyzed by water monomer, water dimer and small clusters of sulfuric acid: kinetics and atmospheric implications, Phys. Chem. Chem. Phys., 2022, 24, 18205-18216. https://pubs.rsc.org/en/content/articlehtml/2022/cp/d1cp03318b

[4] ZhangT. L.,* Wen M. J., Ding C., Zhang Y. Q., Ma X. H.* Wang Z. Q., Makroni L., Liu J. H., Wang R., Multiple evaluations of atmospheric behavior between Criegee intermediates and HCHO: Gas-phase and air-water interface reaction, J. Environ. Sci.2023, 127, 308-319. https://www.sciencedirect.com/science/article/abs/pii/S1001074222003011

[5] Gao J. M., Wang R., Zhang T. L., Liu F. Y., Wang W. L.*, Effect of methyl hydrogen sulfate on the formation of sulfuric acid-ammonia clusters: A theoretical study, J. Chin. Chem. Soc., 2022, DOI: 10.1002/jccs.202200148 https://onlinelibrary. wiley.com/doi/full/10.1002/jccs.202200148  

[6] Zhang Y. Q. , Huang L. J., Ye T., Ding C. , Xu Y., Dang L. L. , Zhang T. L.*, Xu H. T., Zhou K. , Influence of H2SO4···H2O and (H2SO4)on the Hydrolysis of Formaldehyde: A Potential Source of Methanediol in the Troposphere, ACS Earth and Space Chemistry, 2022, DOI: 10.1021/acsearthspacechem.2c00088, https://pubs.acs.org/doi/ 10.1021/acsearthspace chem.2c00088     

 [7] Cheng Y., Wang R., Chen Y. J., Tian S. Y., Gao N. ,Zhang Z. Y. , Zhang T. L.*, Hydrolysis of SO3 in Small Clusters of Sulfuric Acid: Mechanistic and Kinetic Study, ACS Earth and Space Chemistry, 2022, DOI: 10.1021/acsearthspace chem.2c00290.  https://pubs.acs.org/doi/10.1021/acsearthspacechem.2c00290  

2021年发表论文

[1] Wang R., Wen M. J., Liu S., Lu Y. S., Makroni L., Zhang T. L.,* Wang Z. Y., Wang Z. Q., The favorable routes for the hydrolysis of CH2OO with (H2O)n (n = 1–4) investigated by global minimum searching combined with quantum chemical methods, Phys. Chem. Chem. Phys.2021, 23, 12749-12760.  https://pubs.rsc.org/en/content/articlelanding/ 2021/cp/d0cp00028k#!divAbstract

[2]  Wang R., Wen M. J., Chen X., Mu R. X., Zeng Z. P., Chai G., Makroni L., Wang Z. Y., Zhang T. L.,* Atmospheric Chemistry of CH2OO: The Hydrolysis of CH2OO in Small Clusters of Sulfuric Acid, J. Phys. Chem. A, 2021, 125 , 12 , 2642-2652 . https://doi.org/10.1021/acs.jpca.1c02006  

[3] Lu Y. S., Zhang T. L.,Makroni L., Wang W. N., Liu F. Y., Wang W. L.*, The catalytic effects of H2O, basic and acidic catalysts on the gas‐phase hydrolysis mechanism of carbonyl fluoride (CF2O), Int. J. Quantum Chem., 2021, 121(13): e26657. https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.26657   

2020年发表论文

[1] Zhang T. L.,* Wen M. J., Cao X. R., Zhang Y. Q., Zeng Z. P., Guo X. M., Zhao C. B., Lily M.; Wang R.*, The hydrolysis of NO2 dimer in small clusters of sulfuric acid: A potential source of nitrous acid in troposphere, Atmos. Environ.2020, 243, 117876. https://doi.org/10.1016/j.atmosenv.2020.117876      

[2] Wang R., Wen M. J., Chen X., ZhangY. Q, Geng X. M., Su Y. S., Liang M., Shao X. Z.*, Wang W.*, Can (H2O)n (n = 1–2) as effective catalysts in the CH2OO + H2S reaction under tropospheric conditions? Mol. Phys., 2020, 118 (18): e1753840. https://www.tandfonline.com/doi/full/10.1080/00268976.2020.1753840      

[3] Zhang T. L.,* Wen M. J, ZhangY. Q., Chen X., Qiao Z. Y., Su Y. S., Lily M.*, Wang Z. Y. Sulfuric acid catalyzed HCl + HO → Cl + H2O reaction in troposphere: A quantum chemical investigation, Comput. Theor. Chem.2020, 1087, 112936. https://doi.org/10.1016/j.comptc.2020.112936        

[4] Wen M. J., Cao X. R., ZhangY. Q., Liang M., Zhang T. L.,* Muthiah B., Zhou K., Roy S. K.,* Lily M.* Effect of ammonia, ammonia‐water, and sulfuric acid on the HO2 + HO2 → H2O2 + 3O2 reaction in troposphere: Competition between stepwise and one‐step mechanisms, Int. J. Quantum Chem.2020https://doi.org/10.1002/qua.26389      

[5] Zhang T. L.,* Wen M. J, Zeng Z. P., Lu Y. S., Wang Y.,Wang W., Shao X. Z.,* Wang Z. Y., Lily M.* Effect of NH3 and HCOOH on the H2O+ HO → HO2 + H2O reaction in the troposphere: competition between the one-step and stepwise mechanisms, RSC Adv.2020, 15 (10), 9093-9102. https://doi.org/10.1039/D0RA00024H      

[6] Zhang T. L.,* Zhai K. Y., ZhangY. Q., Geng L., Geng Z. R., Zhou M., Lu Y. S., Shao X. Z.*, Lily M. Effect of Water and Ammonia on the HO + NH3 → NH2 + H2O Reaction in Troposphere: Competition between Single and Double Hydrogen Atom Transfer Pathways, Comput. Theor. Chem.2020, 1176: 112747. https://doi.org/10.1016/j.comptc.2020.112747      

[7] Zhang T. L.,* Bi X. J., Wen M. J.,  Liu S., Chai G., Zeng Z. P., Wang R., Wang W. L.*, Long B*. The HO4H → O3 + H2O reaction catalysed by acidic, neutral and basic catalysts in the troposphere, Mol. Phys.2020, 118(12), e1673912.  https://doi.org/10.1080/00268976.2019.1673912     

2019年发表论文

[1]  Zhang T. L.,* Lan X. G., Qiao Z. Y., Wang R., Yu X. H., Xu Q., Wang Z. Y., Jin L. X. Wang Z. Q. Atmospheric chemistry of the self-reaction of HO2 radicals: stepwise Mechanism versus one-step process in the presence of (H2O)n (n = 1-3), Phys. Chem. Chem. Phys., 2019, 21, 24042-24053. https://doi.org/10.1039/C9CP03530C      

[2] Zhang T. L.,* Zhang Y. Q., Wen M. J., Tang Z., Long B*., Yu X. H., Zhao C. B., Wang W. L.*, Long B*. Effect of water, ammonia, and formic acid on the HO2 + Cl reaction under atmospheric condition: competition between a stepwise route and one elementary step, RSC Adv., 2019, 9, 21544-21556. https://doi.org/10.1039/C9RA03541A      

[3] Zhang T. L., * Lan X. G., Zhang Y. H., Wang R., Zhang Y. Q., Qiao Z. Y., Li N. Effect of (H2O)n (n = 1–3) clusters on H2O2 + HO → HO2 + H2O reaction in tropospheric conditions: competition between one-step and stepwise routes. Mol. Phys., 2019, 117, 516-530. https://doi.org/10.1080/00268976.2018.1524939      

[4] Zhang T. L.*, Wen M. J., Ju Y., Kang J. X., Wang R. Theoretical studies on the mechanism and kinetic for CH3CH2O + HO2 and CH3CHOH + HO2 reactions. J. Phys. Org. Chem., 2019, 32: e3895.https://doi.org/10.1002/poc.3895      

2018年发表论文

[1] Zhang T. L.,* Lan X. G., Qiao Z. Y., Wang R., Yu X. H., Xu Q., Wang Z. Y., Jin L. X. Wang Z. Q. Role of the (H2O)n (n = 1–3) cluster in the HO2 + HO → 3O2 + H2O reaction: mechanistic and kinetic studies. Phys. Chem. Chem. Phys.2018, 20, 8152-8165. https://doi.org/10.1039/C8CP00020D      

[2] Zhang T. L.*, Wang K., Qiao Z. Y., Zhang Y. Q., Geng L., Wang R., Wang Z. Y., Zhao C. B., Jin L. X. Catalytic effect of (H2O)n (n = 1-3) on the HO2 + NH2 → NH3 + 3O2 reaction under tropospheric conditions. RSC Adv.2018, 8, 37105-37116. https://doi.org/10.1039/C8RA06549G      

[3] Zhang T. L.*, Lan X. G., Wang R., Soumendra R., Qiao Z. Y., Lu Y. S. The catalytic effects of H2CO3, CH3COOH, HCOOH and H2O on the addition reaction of CH2OO + H2O → CH2(OH)OOH. Mol. Phys., 2018, 116 (14): 1783-1794. https://doi.org/10.1080/00268976.2018.1454612      

[4] Zhang T. L.*, Lan X. G., Wen M. J., Zhang Y. Q., Wang R., Wang Z. Y., Catalytic effect of water, water dimer, HCOOH and H2SO4 on the isomerisation of HON(O)NNO2 to ON(OH)NNO2: a mechanism study, Mol. Simulat.2018, 44(18), 1544-1553. https://doi.org/10.1080/08927022.2018.1518578      

2017年发表论文

[1]  Wang R., Jia Z. L., An Y. M., Zhang T. L.*, Wang Z. Y.*, Roy S. K., Catalytic effect of water, water dimer, water trimer, HCOOH, H2SO4, CH3CH2COOH and HN(NO2)2 on the isomerisation of HN(NO2)2 to O2NNN(O)OH: a mechanism study. Mol. Phys., 2017, 115(13): 1493-1501. https://doi.org/10.1080/ 00268976.2017.1301589

[2]  王睿李一粒凤旭凯宋亮张田雷*, 王竹青靳玲侠张强许琼王志银n(H2O)(n =1, 2)HO2 + NO → HNO3反应中的催化机制研究高等学校化学学报, 2017, 38(3) : 429-441. http://win.wanfangdata.com.cn/Periodical/ gdxxhxxb201703014

[3] Wang R., Kang J. X., Zhang S., Shao X. Z., Jin L. X., Zhang T. L.*, Wang Z. Q.*,. Catalytic effect of (H2O)n ( n =1–2) on the hydrogen abstraction reaction of H2O2 + HS → H2S + HO2 under tropospheric conditions. Comput. Theor. Chem.2017, 1110:25-34. https://doi.org/10.1016/j.comptc.2017.03.045      

[4] Wang R., Li Y. L., Feng X. K., Zhang K., Roy S. K., Dong T., Xu Q., Wang Z. Y.,Zhang T. L.*, Wang Z. Q.*, Computational study on the mechanism and kinetics for the reaction between HCHO and HO2Mol. Simulat., 2017, 43(12): 900-907. https://doi.org/10.1080/08927022.2017.1303686      

[5] Wang R., Lei L., Wang X. G., Lu Y.S., Song L., Ge H. G., Shao X. Z., Wang Z. Y., Zhang T. L.*, Wang W. L.Theoretical kinetic investigation of thermal decomposition of nitropropane, Struct. Chem., 2017, 28(3): 655–666. https://link.springer.com/article/ 10.1007/s11224-016-0834-6    

2016年发表论文

[1] Zhang T. L.*, Yang C., Feng X. K., Kang J. X., Song L., Lu Y. S., Wang Z. Y., Xu Q., Wang W. L., Wang Z. Q. The catalytic effect of water, water dimers and water trimers on H2S + 3O2 formation by the HO2 + HS reaction under tropospheric conditions. Phys. Chem. Chem. Phys.2016, 18(26): 17414. https://doi.org/10.1039/C6CP00654J      

[2] Zhang T. L.*, Zhang P., Jia Z. L.l, Zhang K., Miao X. Y., Wang Z. Q. Effect of a single water molecule on the formations of H2O2 + ClO from HO2 + HOCl reaction under tropospheric conditions. Mol. Phys.2016, 114(14): 2132-2143. https://doi.org/10.1080/00268976.2016.1187771      

[3] Zhang T. L.*,Yang C., Feng X. K., Wang Z. Q., Wang R., Liu Q. L., Zhang P., Wang W. L. Theoretical Study on the Atmospheric Reaction of HS with HO2: Mechanism and Rate Constants of the Major Channel. Acta Physico-Chimica Sinica2016, 32(3):701-710. http://www.whxb.pku.edu.cn/CN/Y2016/V32/I3/701

[4] Wang Z. Y.*, Zhang T. L., Li Q. H. Possible reasons that catalytic reactivity towards low-temperature CO oxidation has not been found in Au3- cluster, Comput. Theor. Chem., 2016, 1085:75-81. https://doi.org/10.1016/j.comptc. 2016.04.001      

2015年发表论文

[1] Zhang T. L.*, Wang R., Chen H., Min S. T., Wang Z. Y., Zhao C. B., .Xu Q., Jin L. X.,Wang W. L.,Wang Z. Q. Can a single water molecule really affect the HO2 + NO2 hydrogen abstraction reaction under tropospheric conditions? Phys. Chem. Chem. Phys., 2015, 17(22):15046-15055. https://doi.org/10.1039/C5CP00968E      

    2014年发表论文

[1] Zhang T. L.*, Wang R., Zhou L. T., Wang Z. Y., Xu Q., Min S. T., Wang W. L. A computational study on the mechanism and kinetics of the reaction between CH3CH2S and OH. RSC Adv., 2014, 4, 62835-62843. https://doi.org/10.1039/C4RA07780F      

[2] Zhang T. L*., Wang R., Wang W. L., Min S. T., Xu Q., Wang Z. Y., Zhao C. B., Wang Z. Q. Water effect on the formation of 3O2 from the self-reaction of two HO2 radicals in tropospheric conditions. Comput. Theor. Chem.2014, 1045,135-144. https://doi.org/10.1016/j.comptc.2014.06.020      

2013年发表论文

[1] Zhang T. L., Wang W. L*. Li C. Y. Du C. M., Lu J., Catalytic Effect of a Single Water Molecule on the Atmospheric Reaction of HO2 + OH: Fact or Fiction? A Mechanistic and Kinetic Study. RSC Adv.2013, 3(20):7381-7391. https://doi.org/10.1039/C3RA40341F      

[2] Zhang T. L., Wang W. N., Liu C., Lu N., Chen M., Guo S., Wang W. L*. Computational Study of the Reaction Mechanism and Kinetics of CH3CHC(CH3)CO-OCH3 Ozonolysis. Acta Physico-Chimica Sinica, 2013, 29(11):2313-2320. http://www.whxb.pku.edu.cn/CN/Y2013/V29/I11/2313

2012年发表论文

[1] Zhang T. L., Li G. N., Wang W. L.*, Du Y. M., Li C. Y., Lu J., Theoretical studies on atmospheric reactions of CH2FO2 with HO2 and HO2-H2O complex. Comput. Theor. Chem., 2012, 991:13-21. https://doi.org/10.1016/j.comptc.2012.03.016      

[2] Zhang P.,Wang W. L.*, Zhang T. L., Chen L., Du Y. M., Li C. Y., Lu J., Theoretical Study on the Mechanism and Kinetics for the Self-Reaction of C2H5O2 Radicals, J. Phys. Chem. A2012, 116,(18):4610-4620. https://doi.org/10.1021/jp301308u      

2011年发表论文

[1] Zhang T. L., Wang W. L.*, Zhang P., Lu J., Zhang Y., Water-Catalyzed Gas-Phase Hydrogen Abstraction Reactions of CH3O2 and HO2 with HO2: A Computational Investigation. Phys. Chem. Chem. Phys., 2011, 13(46):20794-20805. https://doi.org/10.1039/C1CP21563A      

[2] Zhang Y.*, Zhang T. L. Wang W. L. Direct Dynamics Study on Mechanism and Kinetics of the Biradical Self-Reaction of HOO, Int. J. Quantum Chem., 2011, 111(12):3029-3039. https://doi.org/10.1002/qua.22632  

    


获批基金项目

[1]    国家自然科学基金面上项目,22073059,有机过氧化物在液滴气-液界面上大气化学反应机理及气溶胶粒子生长机制研究,2021/01-2024/12,63万元,在研,主持。

[2]    国家自然科学基金青年项目,21603132,水簇(H2O)n (n=1-5)在过氧自由基大气化学反应中的催化机制研究,2017/01-2019/12,20万元,结题,主持。

[3]    陕西省自然科学基金项目,  2022JM-060,无机酸/碱小分子及其团簇存在下Criegee中间体重要大气反应机制与气溶胶新粒子生长机制研究,2022/01-2023/12,5万元,在研,参与。

[4]    陕西省自然科学基金项目,2019JM-336,水-气界面上过氧自由基典型大气化学反应机制的QM/MM模拟,2019/01-2020/12,3万元,结题,主持。

[5]    陕西省自然科学基金项目,2019JM-880,水分子团簇在Criegee自由基大气化学反应中的催化机制研究,2019/01-2020/12,3万元,结题,主持。

[6]    陕西省教育厅科学研究计划专项项目,18JK0417,水簇(H2O)n (n = 1~5) 催化Crieegee自由基大气反应机理的理论研究,2018/01-2019/12,结题,主持。

[7]    国家自然科学基金青年基金,21207081,大气过氧自由基化学放大方法中的水效应机制研究、2013/01-2015/12,25万元,结题,参加。

[8]    国家自然科学基金面上项目,21173139,基于噻吩-苯低聚物的多功能有机电致发光材料结构的理论设计,2012/01-2015/12,57万元,结题,参加。

[9]    陕西省自然科学基金项目,2019JQ-880,水水分子团簇在Criegee自由基大气化学反应中的催化机制研究,2019/01-2020/12,3万元,结题,参与。

[10]    陕西省教育厅科学研究计划专项项目,14JK1154,水催化过氧自由基大气反应机理的理论研究、2014/07-2015/12,2万元,结题,主持。                                  

荣获奖项

[1]    张田雷 (1/5),几类重要体系电子结构与微观反应机理的理论研究,陕西省教育厅,自然科学,陕西省高等学校科学技术奖三等奖, 2020.4.1

[2]    张田雷 (6/9),几类重要反应微观机理与动力学的理论研究,陕西省人民政府,自然科学,省部级,二等奖, 2017.9.30

[3]    张田雷 (5/8),几类重要反应微观机理与动力学的理论研究,陕西省教育厅,自然科学,厅局级,一等奖, 2017.4.01

[4]    张田雷 (1/6),几类重要大气反应机理及动力学性质的理论研究, 陕西理工大学优秀科技成果奖二等奖, 2019.07.01

[5]    张田雷 (3/4), 几类重要反应机理的理论研究, 陕西理工大学优秀科技成果奖二等奖, 2017.05.01

荣誉称号

陕西省特殊支持计划人才、汉中市青年科技创新领军人才