[39] X. Zhou, B. Fu, L. Li, Z. Tian, X. Xu, Z. Wu, J. Yang, Z. Zhang*, Hydrogen-substituted graphdiyne encapsulated cuprous oxide photocathode for efficient and stable photoelectrochemical water reduction. Nat. Commun. 2022, 13, 5770.
[38] S. Lu, B. Fu, Z. Zhang*, Zwitterionic Polymers Coating Antibiofouling Photoelectrochemical Aptasensor for In Vivo Antibiotic Metabolism Monitoring and Tracking. Anal. Chem. 2022, 94, 14509–14516.
[37] D. Wu, W. Zhang, B. Fu, Z. Zhang*, Living intracellular inorganic-microorganism biohybrid system for efficient solar hydrogen generation. Joule, 2022, 6, 2293-2303.
[36] L. Li, Z. Zhang*, In-situ fabrication of Cu doped dual-phase CsPbBr3–Cs4PbBr6 inorganic perovskite nanocomposites for efficient and selective photocatalytic CO2 reduction. Chem. Eng. J. 2022, 434, 134811.
[35] Z. Wu, H. Zong, B. Fu, Z. Zhang*, MXene with controlled surface termination groups for boosting photoelectrochemical water splitting. J. Mater. Chem. A 2022, 10, 24793.
[34] S. Tong, B. Fu, L. Gan*, Z. Zhang*, Single atom catalysts for boosting electrocatalytic and photoelectrocatalytic performances. J. Mater. Chem. A 2021, 9, 10731.
[33] L. Li, L. Gan*, Z. Zhang*, Encapsulation Strategy on All Inorganic Perovskites for Stable and Efficient Photoelectrocatalytic Water Splitting. Adv. Mater. Interfaces 2021, 8, 2100202.
[32] J. Liu, B. Fu, Z. Zhang*, Ionic Current Rectification Triggered Photoelectrochemical Chiral Sensing Platform for Recognition of Amino Acid Enantiomers on Self-Standing Nanochannel Arrays. Anal. Chem. 2020, 92, 8670-8674.
[31] B. Fu, Z. Zhang*, Rationally Engineered Photonic−Plasmonic Synergistic Resonators in Second Near-Infrared Window for in Vivo Photoelectrochemical Biodetection. Nano. Lett. 2019, 19, 9069.
[30] D. Wu, Z. Zhang*, Synergistic bio-recognition/spatial-confinement for effective capture and sensitive photoelectrochemical detection of MCF-7 cells. Chem. Commun. 2019, 55, 14514.
[29] X. Zhou, J. Yang, Z. Zhang*, Acetylenic carbon-rich frameworks on copper foam as conjugated polymer photocathodes for efficient and stable water reduction. Chem. Commun. 2019, 55, 10396.
[28] B. Fu, Z. Zhang*, Sensitive and Site-Selective Determination of Phosphorylated Peptides with a Ratiometric Photoelectrochemical Strategy. Anal. Chem. 2019, 91, 14829.
[27] Z. Li, X. Zhou, J. Yang, B. Fu, Z. Zhang*, Near-Infrared-Responsive Photoelectrochemical Aptasensing Platform Based on Plasmonic Nanoparticle-Decorated Two-Dimensional Photonic Crystals. ACS Appl. Mater. Interfaces 2019, 11, 21417.
[26] B. Fu, W. Wu, L. Gan*, Z. Zhang*, Bulk/Surface Defects Engineered TiO2 Nanotube Photonic Crystals Coupled with Plasmonic Gold Nanoparticles for Effective in Vivo Near-Infrared Light Photoelectrochemical Detection. Anal. Chem. 2019, 91, 14611.
[25] B. Fu, Z. Zhang*, Periodical 2D Photonic–Plasmonic Au/TiOx Nanocavity Resonators for Photoelectrochemical Applications. Small 2018, 14, 1703610.
[24] S. Tong, Z. Li, B. Qiu, Y. Zhao, Z. Zhang*, Biphasic nickel phosphide nanosheets: Self-supported electrocatalyst for sensitive and selective electrochemical H2O2 detection and its practical applications in blood and living cells. Sens. Actua. B: Chem 2018, 258, 789.
[23] Z. Li, Z. Zhang*, Tetrafunctional Cu2S thin layers on Cu2O nanowires for efficient photoelectrochemical water splitting. Nano. Res. 2018, 11, 1530.
[22] D. Wu, Z. Zhang*, Simultaneous non-metal doping and cocatalyst decoration for efficient photoelectrochemical water splitting on hematite photoanodes. Electrocheim. Acta 2018, 282, 48.
[21] Y. Xin, Z. Zhang*, Photoelectrochemical Stripping Analysis. Anal. Chem. 2018, 90, 1068.
[20] Z. Li, C. Su, D. Wu, Z. Zhang*, Gold Nanoparticles Decorated Hematite Photoelectrode for Sensitive and Selective Photoelectrochemical Aptasensing of Lysozyme. Anal. Chem. 2018, 90, 961.
[19] W. Wu, Z. Zhang*, Defect-engineered TiO2 nanotube photonic crystals for the fabrication of near-infrared photoelectrochemical sensor. J. Mater. Chem. B 2017, 5, 4883.
[18] Y. Xin, Y. Zhao, B. Qiu, Z. Zhang*, Sputtering gold nanoparticles on nanoporous bismuth vanadate for sensitive and selective photoelectrochemical aptasensing of thrombin. Chem. Commun. 2017, 53, 8898.
[17] Y. Xin, Z. Li, W. Wu, B. Fu, H. Wu, Z. Zhang*, Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO2 nanotube photonic crystals for sensitive and selective detection of dopamine release from mouse brain. Biosens. Bioelectron. 2017, 87, 396.
[16] Y. Xin, X. Kan, L. Gan*, Z. Zhang*, Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting. ACS Nano 2017, 11, 10303.
[15] Z. Li, Y. Xin, W. Wu, B. Fu, Z. Zhang*, Topotactic Conversion of Copper(I) Phosphide Nanowires for Sensitive Electrochemical Detection of H2O2 Release from Living Cells. Anal. Chem. 2016, 88, 7724.
[14] Y. Xin, Z. Li, W. Wu, B. Fu, Z. Zhang*, Pyrite FeS2 Sensitized TiO2 Nanotube Photoanode for Boosting Near-Infrared Light Photoelectrochemical Water Splitting. ACS Sustain. Chem. Eng. 2016, 4, 6659.
[13] Z. Li, Y. Xin, W. Wu, B. Fu, Z. Zhang*, Phosphorus Cation Doping: A New Strategy for Boosting Photoelectrochemical Performance on TiO2 Nanotube Photonic Crystals. ACS Appl. Mater. Interfaces 2016, 8, 30972.
[12] Y. Xin, Y. Cheng, Y. Zhou, Z. Li, H. Wu, Z. Zhang*, Lithium ion intercalation of 3-D vertical hierarchical TiO2 nanotubes on a titanium mesh for efficient photoelectrochemical water splitting. Chem. Commun. 2016, 52, 4541.
[11] Z. Li, Y. Xin, Z. Zhang*, New Photocathodic Analysis Platform with Quasi-Core/Shell-Structured TiO2@Cu2O for Sensitive Detection of H2O2 Release from Living Cells. Anal. Chem. 2015, 87, 10491.
[10] Z. Li, Y. Xin, Z. Zhang*, Colorful titanium oxides: a new class of photonic materials. Nanoscale 2015, 7, 19894.
[9] Y. Xin, Z. Li, Z. Zhang*, Photoelectrochemical aptasensor for the sensitive and selective detection of kanamycin based on Au nanoparticle functionalized self-doped TiO2 nanotube arrays. Chem. Commun. 2015, 51, 15498.
[8] Z. Zhang*, H. Wu, Multiple band light trapping in ultraviolet, visible and near infrared regions with TiO2 based photonic materials. Chem. Commun. 2014, 50, 14179.
[7] Z. Zhang, X. Yang, M. N. Hedhili, E. Ahmed, L. Shi, P. Wang*, Microwave-Assisted Self-Doping of TiO2 Photonic Crystals for Efficient Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2014, 6, 691.
[6] Z. Zhang, R. Dua, L. Zhang, H. Zhu, H. Zhang, P. Wang*, Carbon-Layer-Protected Cuprous Oxide Nanowire Arrays for Efficient Water Reduction. ACS Nano 2013, 7, 1709.
[5] Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, P. Wang*, Plasmonic Gold Nanocrystals Coupled with Photonic Crystal Seamlessly on TiO2 Nanotube Photoelectrodes for Efficient Visible Light Photoelectrochemical Water Splitting. Nano. Lett. 2013, 13, 14.
[4] Z. Zhang, H. Wu, Y. Yuan, Y. Fang, L. Jin*, Development of a novel capillary array photocatalytic reactor and application for degradation of azo dye. Chem. Eng. J. 2012, 184, 9.
[3] Z. Zhang, Y. Yu, P. Wang*, Hierarchical Top-Porous/Bottom-Tubular TiO2 Nanostructures Decorated with Pd Nanoparticles for Efficient Photoelectrocatalytic Decomposition of Synergistic Pollutants. ACS Appl. Mater. Interfaces 2012, 4, 990.
[2] Z. Zhang, P. Wang*, Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ. Sci. 2012, 5, 6506.
[1] Z. Zhang, P. Wang*, Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 2012, 22, 2456.