2024年
[1] Xie X.; Jin, K.; Wang, Z.; Wang, S.; Zhu, J.; Huang J.; Tang S.; Cai, K.; Zhang, J.*, Constraint Coupling of Redox Cascade and Electron Transfer Synchronization on Electrode-Nanosensor Interface for Repeatable Detection of Tumor Biomarkers. Small Methods 2024, 8, 2301330.
[2] Wang, Z.; Xie, X.; Jin, K.; Xia, D.; Zhu, J.; Zhang, J.*, Amplified and Specific Staining of Protein Dimerization on Cell Membrane Catalyzed by Responsively Installed DNA Nanomachines for Cancer Diagnosis. Adv. Healthcare Mater. 2024, 13(10), 2303398.
[3] Tang, S.; Xie, X.; Li, L.; Zhou, L.; Xing, Y.; Chen, Y.; Cai, K.; Li, F.*; Zhang, J.*, High Fidelity Detection of miRNAs from Complex Physiological Samples Through Electrochemical Nanosensors Empowered by Proximity Catalysis and Magnetic Separation. Biosens. Bioelectron. 2024, 260, 116435.
[4] Yan, X.#; Zhang, H.#; Zhu, H.; Qu, Y.; Wu, Y.; Zhu, J.; Li, L.; Zhang, J.*, Nanohybrid-Based Redox Homeostasis Perturbators Escaped from Early Lysosomes toward Amplified Sensitization of Tumor Cells and Photothermally Maneuvered Pyroptosis Therapy. ACS Appl. Mater. Interfaces 2024, 16(33), 43212–43226.
[5] Li, K.; Li, L.; Xie, X.; Zhu, J.; Xia, D.; Xiang, L.; Cai, K.; Zhang, J.*, Spatially Confined Photoacoustic Effects of Responsive Nanoassembly Boosts Lysosomal Membrane Permeabilization and Immunotherapy of Triple-Negative Breast Cancer. Acta Biomater. 2024, 187, 381-395.
2023年
[1] Xing, Y.; Li, L.; Chen, Y.; Wang, L.; Tang, S.; Xie, X.; Wang, S.; Huang, J.; Cai, K.*; Zhang, J.*, Flower-like Nanozyme with Highly Porous Carbon Matrix Induces Robust Oxidative Storm against Drug-Resistant Cancer. ACS Nano 2023, 17 (7), 6731–6744.
[2] Wang, S.; Huang, J.; Zhu, H.; Zhu, J.; Wang, Z.; Xing, Y.; Xie, X.; Cai, K.; Zhang, J.*, Nanomodulators Capable of Timely Scavenging ROS for Inflammation and Prognosis Control Following Photothermal Tumor Therapy. Adv. Funct. Mater. 2023, 33 (21), 2213151.
[3] Chen, Y.; Xing, Y.; Wang, Z.; Li, L.; Wang, H.; Tang, S.; Cai, K.; Zhang, J.*, Dual factor coactivatable fluorescent nanosensor with boosted cytoplasmic biomarker accessibility toward selective tumor imaging. Biosens. Bioelectron. 2023, 223, 115026.
[4] Guan, H.; Xu, Z.; Du, G.; Liu, Q.; Tan, Q.; Chen, Y.; Chen, S.; Wu, J.; Wang, F.; Zhang, J.*; Sun, L.*; Xiao, W.*, A mesoporous polydopamine-derived nanomedicine for targeted and synergistic treatment of inflammatory bowel disease by pH-Responsive drug release and ROS scavenging. Mater. Today Bio 2023, 19, 100610.
[5] Wang, L.; Tang, S.; Li, L.; Jin, K.; Xie, X.; Chen, Y.; Cai, K.*; Zhang, J.*, Nucleic Acids Enabled-Interfacial Engineering for Biomarker Sensing with Distance Constraint Effects. Adv. Sensor Res. 2023, 2 (4), 2200062.
[6] Jin, K.; Xie, X.; Zhu, J.; Wang, Z.; Xing, Y.; Wang, L.*; Cai, K.; Zhang, J.*, Highly repeatable detection of miRNAs in complex biological mixtures mediated by magnetically separable spherical nucleic acids and homogeneous signal amplification. Sensor. Actua. B-Chem. 2023, 393, 134191.
[7] Wang, H.#; Wang, L.#; Chen, Y.; Huang, J.; Xing, Y.; Wang, L.; Zhang, J.*; Yang H.*, Catalytically proficient ceria nanodots supported on redox-active mesoporous hosts for treatment of inflammatory bowel disease via efficient ROS scavenging. J. Mater. Chem. B 2023, 11, 10369-10382.
[8] 张吉喜;邢玉鑫;黄基茜;丁涛;唐嘉,一种具有催化性质的复合纳米材料及制备方法与应用[P]: 发明专利, ZL202011316506.5.
2022年
[1] Xing, Y.; Wang, L.; Wang, L.; Huang, J.; Wang, S.; Xie, X.; Zhu, J.; Ding, T.; Cai, K.; Zhang, J.*, Flower-Like Nanozymes with Large Accessibility of Single Atom Catalysis Sites for ROS Generation Boosted Tumor Therapy. Adv. Funct. Mater. 2022, 32 (16), 2111171.
[2] Wang, Z.; Jia, R.; Chen, Y.; Xie, X.; Wang, S.; Huang, J.; Zhou, M.; Cai, K.*; Zhang, J.*, Supramolecular semiquinone radicals confined with DNAzymes for dissipative ROS generation and therapy. Nano Today 2022, 43, 101402.
[3] Wang, L.; Zhang, T.; Xing, Y.; Wang, Z.; Xie, X.; Zhang, J.*; Cai, K.*, Interfacially responsive electron transfer and matter conversion by polydopamine-mediated nanoplatforms for advancing disease theranostics. WIRES NANOMED NANOBI. 2022, 14(5), e1805.
[4] Ding, T.; Zhu, J.; Guan, H.; Xia, D.; Xing, Y.; Huang, J.; Wang, Z.; Cai, K.; Zhang, J.*, Photothermally Triggered Melting and Perfusion: Responsive Colloidosomes for Cytosolic Delivery of Membrane-Impermeable Drugs in Tumor Therapy, J. Mater. Chem. B 2022, 10 (7), 1103–1115.
[5] Zhang, X.; Jiang, L.; Li, X.; Zheng, L.; Dang, R.; Liu, X.; Wang, X.; Chen, L.; Zhang, Y. S.*; Zhang, J.*; Yang, D.*, A Bioinspired Hemostatic Powder Derived from the Skin Secretion of Andrias davidianus for Rapid Hemostasis and Intraoral Wound Healing. Small 2022, 18 (3), 2101699.
[6] Wang, Z.; Ding, T.; Wang, L.; Wang, S.; Zhou, M.; Zhang, J.*; Cai, K., Exo/endogenous factors co-activatable nanodevice for spatiotemporally controlled miRNA imaging and guided tumor ablation. Nano Res. 2022, 15 (2), 845–857.
[7] Zhou, M.; Wang, Z.; Xia, D.; Xie, X.; Chen, Y.; Xing, Y.; Cai, K.; Zhang, J.*, Hybrid nanoassembly with two-tier host-guest architecture and regioselective enrichment capacity for repetitive SERS detection. Sensor. Actuat. B-Chem. 2022, 369, 132359.
[8] Zhu, H.#; Qu, Y.#; Wang, S.; Huang, J.; Zhu, J.; Wang, L.*, Cai, K.; Zhang, J.*, Melanin Nanoparticle-Actuated Redox-State Perturbation and Temporally Photoactivated Thermal Stress for Synergistic Tumor Therapy. ACS Biomater. Sci. Eng. 2022, 8 (9), 3944–3956.
[9] Huang, J.; Wang, S.; Wang, X.; Zhu, J.; Wang, Z.; Zhang, X.*; Cai, K.; Zhang, J.*, Combination wound healing using polymer entangled porous nanoadhesive hybrids with robust ROS scavenging and angiogenesis properties, Acta Biomater. 2022, 152, 171-185.
[10] Zhu, J.; Ding, T.; Jin, K.; Xing, Y.; Huang, J.; Xia, D.; Cai, K.; Zhang, J.*, Integrated energy conversion units in nanoscale frameworks induce sustained generation and amplified lethality of singlet oxygen in oxidative therapy of tumor, VIEW 2022, 3 (6), 20220051.
[11] 张吉喜;王振强;陈榆桦;谢西月;贾瑞瑞,一种新型半醌自由基纳米材料及其制备方法与应用[P]: 发明专利, ZL202110610389.1.
2021年
[1] Ding, T.; Wang, Z.; Xia, D.; Zhu, J.; Huang, J.; Xing, Y.; Wang, S.; Chen, Y.; Zhang, J.*; Cai, K., Long‐Lasting Reactive Oxygen Species Generation by Porous Redox Mediator‐Potentiated Nanoreactor for Effective Tumor Therapy. Adv. Funct. Mater. 2021, 31 (13), 2008573.
[2] Xie, X.; Wang, Z.; Zhou, M.; Xing, Y.; Chen, Y.; Huang, J.; Cai, K.; Zhang, J.*, Redox Host–Guest Nanosensors Installed with DNA Gatekeepers for Immobilization-Free and Ratiometric Electrochemical Detection of miRNA. Small Methods 2021, 5 (12), 2101072.
[3] Yang, M.; Wang, Z.; Ding, T.; Tang, J.; Xie, X.; Xing, Y.; Wang, L.*; Zhang, J.*; Cai, K., Interfacial Engineering of Hybrid Polydopamine/Polypyrrole Nanosheets with Narrow Band Gaps for Fluorescence Sensing of MicroRNA. ACS Appl. Mater. Interfaces 2021, 13 (35), 42183–42194.
[4] Xie, X.; Tang, J.; Xing, Y.; Wang, Z.; Ding, T.; Zhang, J.*; Cai, K., Intervention of Polydopamine Assembly and Adhesion on Nanoscale Interfaces: State‐of‐the‐Art Designs and Biomedical Applications. Adv. Healthcare Mater. 2021, 10 (9), 2002138.
[5] Sutanto, A. K.; Xing, Y.; Ding, T.; Wang, Z.; Sun, K.; Mo, D.; Zhang, J.*; Cai, K., Hybrid mesoporous nanoparticles with highly integrated polydopamine for pH-responsive membrane permeation and drug delivery. Colloids Interface Sci. Commun. 2021, 41, 100385.
2020年
[1] Zhang, J.; Rosenholm, J. M., Molecular and nanoscale engineering of porous silica particles for drug delivery, Chapter 17, Nanoengineered Biomaterials for Advanced Drug Delivery, 2020, Elsevier.
[2] Tang, J.; Xing, Y.; Wang, Z.; Yang, M.; Zhang, J.*; Cai, K., Janus nanoparticles with asymmetrically subcompartmentalized sensing and amplification modules toward fluorescence detection of microRNA. Sensor. Actuat. B-Chem. 2020, 320, 128438.
[3] Mo, D.; Wang, Z.; Sun, K.; Xie, X.; Zhang, J.*; Cai, K., Core-shell metal-organic frameworks and hierarchical host-guest structures toward water-stable luminescence of lanthanide complexes in encoding beads. J. Mater. Chem. C 2020, 8 (32), 11110–11118.
[4] 张吉喜;陈凤, 一种荧光纳米颗粒及其制备方法[P]:发明专利,ZL201711482848.2.
[5] 张吉喜;莫东;孙凯瑶;丁涛, 一种超疏水性壳层保护的复合荧光颗粒及其制备方法[P]:发明专利,ZL201910965237.6.
2019年
[1] Xing, Y.; Ding, T.; Wang, Z.; Wang, L.; Guan, H.; Tang, J.; Mo, D.; Zhang, J.*, Temporally Controlled Photothermal/Photodynamic and Combined Therapy for Overcoming Multidrug Resistance of Cancer by Polydopamine Nanoclustered Micelles. ACS Appl. Mater. Interfaces 2019, 11 (15), 13945–13953.
[2] Ding, T.; Xing, Y.; Wang, Z.; Guan, H.; Wang, L.; Zhang, J.*; Cai, K., Structural complementarity from DNA for directing two-dimensional polydopamine nanomaterials with biomedical applications. Nanoscale Horiz. 2019, 4, 652–657.
[3] Guan, H.; Ding, T.; Zhou, W.; Wang, Z.; Zhang, J.*; Cai, K., Hexagonal polypyrrole nanosheets from interface driven heterogeneous hybridization and self-assembly for photothermal cancer treatment. Chem. Commun. 2019, 55 (30), 4359–4362.
[4] Wang, Z.; Wang, L.; Prabhakar, N.; Xing, Y.; Rosenholm, J. M.; Zhang, J.*; Cai, K., CaP coated mesoporous polydopamine nanoparticles with responsive membrane permeation ability for combined photothermal and siRNA therapy. Acta Biomater. 2019, 86, 416–428.
[5] Zhou, W.; Guan, H.; Sun, K.; Xing, Y.; Zhang, J.*, FeOOH/Polypyrrole Nanocomposites with an Islands-in-Sea Structure toward Combined Photothermal/Chemodynamic Therapy. ACS Appl. Bio Mater. 2019, 2 (7), 2708–2714.
[6] Huang, J.; Wang, S.; Xing, Y.; Zhou, W.; Zhang, J.*; Cai, K., Interface-Hybridization-Enhanced Photothermal Performance of Polypyrrole/Polydopamine Heterojunctions on Porous Nanoparticles. Macromol. Rapid Commun. 2019, 40 (19), 1900263.
[7] Pada, A.-K.; Desai, D.; Sun, K.; Prakirth Govardhanam, N.; Törnquist, K.; Zhang, J.*; Rosenholm, J. M., Comparison of Polydopamine-Coated Mesoporous Silica Nanorods and Spheres for the Delivery of Hydrophilic and Hydrophobic Anticancer Drugs. Int. J. Mol. Sci. 2019, 20 (14), 3408.
[8] Sun, K.; Ding, T.; Xing, Y.; Mo, D.; Zhang, J.*; Rosenholm, J. M., Hybrid mesoporous nanorods with deeply grooved lateral faces toward cytosolic drug delivery. Biomater. Sci. 2019, 7 (12), 5301–5311.
[9] 张吉喜; 王振强, 基于介孔颗粒的荧光适配体检测microRNA方法[P]:发明专利,ZL201710086827.2.
2018年
[1] Ding, T.; Wang, L.; Zhang, J.*; Xing, Y.; Cai, K., Interfacially active polydopamine for nanoparticle stabilized nanocapsules in a one-pot assembly strategy toward efficient drug delivery. J. Mater. Chem. B 2018, 6 (12), 1754–1763.
[2] Wang, L.; Guan, H.; Wang, Z.; Xing, Y.; Zhang, J.*; Cai, K., Hybrid Mesoporous–Microporous Nanocarriers for Overcoming Multidrug Resistance by Sequential Drug Delivery. Mol. Pharmaceutics 2018, 15 (7), 2503–2512.
[3] Guan, H.; Wang, L.; Zhang, J.*; Xing, Y.; Cai, K., Selective Enrichment of Polydopamine in Mesoporous Nanocarriers for Nuclear‐Targeted Drug Delivery. Part. Part. Syst. Charact. 2018, 35 (6), 1800011.
[4] Chen, F.; Wang, L.; Xing, Y.; Zhang, J.*, Stable photoluminescence of lanthanide complexes in aqueous media through Metal-Organic Frameworks Nanoparticles with plugged surface. J. Colloid Interface Sci. 2018, 527, 68–77.
[5] Wang, Y.; Zhou, W.; Chen, F.; Sun, K.; Zhang, J.*; Özliseli, E.; Rosenholm, J. M., Terbium complexes encapsulated in hierarchically organized hybrid MOF particles toward stable luminescence in aqueous media. CrystEngComm 2018, 20 (30), 4225–4229.
2017年
[1] Xing, Y.; Zhang, J.*; Chen, F.; Liu, J.; Cai, K., Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistance via synergistic chemo-photothermal therapy. Nanoscale 2017, 9, 8781–8790.
[2] Liu, J.; Sen Karaman, D.; Zhang, J.*; Rosenholm, J. M.; Guo, X.; Cai, K., NIR light-activated dual-modality cancer therapy mediated by photochemical internalization of porous nanocarriers with tethered lipid bilayers. J. Mater. Chem. B 2017, 5 (42), 8289–8298.
[3] Zhang, J.; Cai, K., Integration of polymers in the pore space of mesoporous nanocarriers for drug delivery. J. Mater. Chem. B 2017, 5 (45), 8891–8903.
[4] Wang, Z.; Zhang, J.*; Chen, F.; Cai, K., Fluorescent miRNA analysis enhanced by mesopore effects of polydopamine nanoquenchers. Analyst 2017, 142 (15), 2796–2804.
2016年
[1] Zheng, X.; Chen, F.; Zhang, J.*; Cai, K., Silica-assisted incorporation of polydopamine into the framework of porous nanocarriers by a facile one-pot synthesis. J. Mater. Chem. B 2016, 4 (14), 2435–2443.
[2] Prabhakar, N.; Zhang, J.*; Desai, D.; Casals, E.; Gulin-Sarfraz, T.; Näreoja, T.; Westermarck, J.; Rosenholm, J. M., Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery. Int. J. Nanomed. 2016, 11, 6591–6608.
[3] Chen, F.; Xing, Y.; Wang, Z.; Zheng, X.; Zhang, J.*; Cai, K., Nanoscale Polydopamine (PDA) Meets π–π Interactions: An Interface-Directed Coassembly Approach for Mesoporous Nanoparticles. Langmuir 2016, 32 (46), 12119–12128.
[4] Yao, X.; Zheng, X.; Zhang, J.*; Cai, K., Oxidation-induced surface deposition of tannic acid: towards molecular gates on porous nanocarriers for acid-responsive drug delivery. RSC Adv. 2016, 6 (80), 76473–76481.
2015年以前
[1] Zheng, X.; Zhang, J.*; Wang, J.; Qi, X.; Rosenholm, J. M.; Cai, K., Polydopamine Coatings in Confined Nanopore Space: Toward Improved Retention and Release of Hydrophilic Cargo. J. Phys. Chem. C 2015, 119 (43), 24512–24521.
[2] Zhang, J.; Rosenholm, J. M., The viability of mesoporous silica nanoparticles for drug delivery. Ther. Deliv. 2015, 6 (8), 891–893.
[3] Şen Karaman, D.; Gulin-Sarfraz, T.; Zhang, J.*; Rosenholm, J. M., One-pot synthesis of pore-expanded hollow mesoporous silica particles. Mater. Lett. 2015, 143 (0), 140–143.
[4] Zhang, J.*; Prabhakar, N.; Näreoja, T.; Rosenholm, J. M., Semiconducting Polymer Encapsulated Mesoporous Silica Particles with Conjugated Europium Complexes: Toward Enhanced Luminescence under Aqueous Conditions. ACS Appl. Mater. Interfaces 2014, 6 (21), 19064–19074.
[5] Zhang, J.; Desai, D.; Rosenholm, J. M., Tethered Lipid Bilayer Gates: Toward Extended Retention of Hydrophilic Cargo in Porous Nanocarriers. Adv. Funct. Mater. 2014, 24 (16), 2352–2360.
[6] Zhang, J.; Niemela, M.; Westermarck, J.; Rosenholm, J. M., Mesoporous silica nanoparticles with redox-responsive surface linkers for charge-reversible loading and release of short oligonucleotides. Dalton Trans. 2014, 43 (10), 4115–4126.