成果及论文
1. Zhang, X., Sun, J., Cheng, Z., Wu, M., Guo, Z., & Zhang, H. (2024). Design, Perspective, and Challenge of Niobium‐Based Anode Materials for High‐Energy Alkali Metal‐Ion Batteries. Advanced Functional Materials. https://doi.org/10.1002/adfm.202405392
2. Sun, D., Tang, C., Li, H., Zhang, X., Zhu, G., Huang, Z.-D., Du, A., & Zhang, H. (2024). Spatially confined synthesis of TiNb2O7 quantum dots onto mesoporous carbon and Ti3C2Tx MXene for boosting lithium storage. Green Energy & Environment. https://doi.org/10.1016/j.gee.2024.03.004
3. Liu, K., Cheng, H., Wang, Z., Zhao, Y., Lv, Y., Shi, L., Cai, X., Cheng, Z., Zhang, H., & Yuan, S. (2024). A 3 µm‐Ultrathin Hybrid Electrolyte Membrane with Integrative Architecture for All‐Solid‐State Lithium Metal Batteries. Advanced Energy Materials, 14(14). https://doi.org/10.1002/aenm.202303940
4. Zhu, G., Luo, D., Chen, X., Yang, J., & Zhang, H. (2023). Emerging Multiscale Porous Anodes toward Fast Charging Lithium-Ion Batteries. ACS Nano, 17(21), 20850-20874. https://doi.org/10.1021/acsnano.3c07424
5. Li, H., Lv, F., Fang, X., Zhu, G., Yu, W., & Zhang, H. (2023). Molecular engineering assembly of mesoporous carbon onto Ti3C2Tx MXene for enhanced lithium‐ion storage. Carbon Neutralization, 2(6), 678-688. https://doi.org/10.1002/cnl2.93
6. Huang, N., Tang, C., Jiang, H., Sun, J., Du, A., & Zhang, H. (2023). Interfacial growth of N,S-codoped mesoporous carbon onto biomass-derived carbon for superior potassium-ion storage. Nano Research, 17(4), 2619-2627. https://doi.org/10.1007/s12274-023-6045-8
7. Cheng, H., Liu, Y., Cheng, Z., Wang, X., Huang, N., & Zhang, H. (2023). Ti3C2Tx MXene wrapped, carbon-coated porous Si sheets for improved lithium storage performance. Chinese Chemical Letters, 35(2). https://doi.org/10.1016/j.cclet.2023.108923
8. Cheng, Z., Jiang, H., Zhang, X., Cheng, F., Wu, M., & Zhang, H. (2023). Fundamental Understanding and Facing Challenges in Structural Design of Porous Si‐Based Anodes for Lithium‐Ion Batteries. Advanced Functional Materials, 33(26). https://doi.org/10.1002/adfm.202301109
9. Li, H., Fang, X., Lv, F., Yu, W., Cheng, H., & Zhang, H. (2023). Controllable assembly of nitrogen-doped mesoporous carbon with different pore structures onto CNTs for excellent lithium storage. Nano Research, 16(3), 3879-3887. https://doi.org/10.1007/s12274-023-5540-2
10. Fang, X., Zhu, G., Yuan, S., Wang, L., Shi, L., Yu, W., & Zhang, H. (2023). Interfacial encapsulation stress management of micron-sized porous SiO anodes for high-energy lithium-ion batteries. Journal of Materials Chemistry A, 11(2), 972-982. https://doi.org/10.1039/d2ta08459g
11. Sun, D., Tang, C., Cheng, H., Xu, W., Du, A., & Zhang, H. (2022). Pumpkin-like MoP-MoS2@Aspergillus niger spore-derived N-doped carbon heterostructure for enhanced potassium storage. Journal of Energy Chemistry, 72, 479-486. https://doi.org/10.1016/j.jechem.2022.05.043
12. Hu, Y., Tang, C., Lv, F., Du, A., Wu, Z. S., & Zhang, H. (2022). K‐Functionalized Carbon Quantum Dots‐Induced Interface Assembly of Carbon Nanocages for Ultrastable Potassium Storage Performance. Small Methods, 6(5). https://doi.org/10.1002/smtd.202101627
13. Li, H., Chen, L., Li, X., Sun, D., & Zhang, H. (2022). Recent Progress on Asymmetric Carbon- and Silica-Based Nanomaterials: From Synthetic Strategies to Their Applications. Nano-Micro Letters, 14(1). https://doi.org/10.1007/s40820-021-00789-y
14. Wang, C., Ha, Y., Mao, X., Xu, W., Du, A., Wu, R., Chou, S., & Zhang, H. (2022). Co Nanoparticles Encapsulated in N‐Doped Carbon Nanotubes Grafted CNTs as Electrocatalysts for Enhanced Oxygen Reduction Reaction. Advanced Materials Interfaces, 9(5). https://doi.org/10.1002/admi.202101877
15. He, F., Tang, C., Liu, Y., Li, H., Du, A., & Zhang, H. (2022). Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries. Journal of Materials Science & Technology, 100, 101-109. https://doi.org/10.1016/j.jmst.2021.05.048
16. Hu, Y., Tang, C., Li, H., Du, A., Luo, W., Wu, M., & Zhang, H. (2022). B-incorporated, N-doped hierarchically porous carbon nanosheets as anodes for boosted potassium storage capability. Chinese Chemical Letters, 33(1), 480-485. https://doi.org/10.1016/j.cclet.2021.06.063
17. Liu, Y., Tang, C., Sun, W., Zhu, G., Du, A., & Zhang, H. (2022). In-situ conversion growth of carbon-coated MoS2/N-doped carbon nanotubes as anodes with superior capacity retention for sodium-ion batteries. Journal of Materials Science & Technology, 102, 8-15. https://doi.org/10.1016/j.jmst.2021.06.036
18. Zhu, G., Chao, D., Xu, W., Wu, M., & Zhang, H. (2021). Microscale Silicon-Based Anodes: Fundamental Understanding and Industrial Prospects for Practical High-Energy Lithium-Ion Batteries. ACS Nano, 15(10), 15567-15593. https://doi.org/10.1021/acsnano.1c05898
19. He, F., Tang, C., Zhu, G., Liu, Y., Du, A., Zhang, Q., Wu, M., & Zhang, H. (2021). Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage. Science China Chemistry, 64(6), 964-973. https://doi.org/10.1007/s11426-020-9942-9
20. Geng, H., Peng, Y., Qu, L., Zhang, H., & Wu, M. (2020). Structure Design and Composition Engineering of Carbon‐Based Nanomaterials for Lithium Energy Storage. Advanced Energy Materials, 10(10). https://doi.org/10.1002/aenm.201903030