2024
[130]Liu Y, Zeng Z, Zhang L, et al. Flow instabilities driven by Prandtl number effect and rotation-depth coupling effect in the cylinder with a top disk[J]. Physics of Fluids, 2024, 36.
[129] Xiao Y, Zeng Z, Zhang LQ, et al. A reduction-consistent phase field model for non-isothermal multiphase flows of N immiscible incompressible fluids[J]. International Journal of Heat and Mass Transfer, 2024, 228: 125657.
[128] Yaming Tu, Zhong Zeng, Liangqi Zhang, Yue Wang, Yong Liu, Hao Li, Chengzhao Liu, Linmao Yin, Hao Liu; Stability of buoyancy–thermocapillary convection in molten silicon liquid bridge between two disks with different radii under gravity. Physics of Fluids 1 February 2024; 36 (2): 024112.
[127] Hao Li, Zhong Zeng, Liangqi Zhang, Yue Wang, Yong Liu, Hao Liu; Linear stability analysis on the thermocapillary flow of molten silicon in a liquid bridge between unequal disks under a rotating magnetic field. Physics of Fluids 1 January 2024; 36 (1): 014109.
2023
[126]Chen S , Zeng Z, Zhang L,et al.Dynamic mode decomposition of thermocapillary convection in GaAs melt liquid bridge between unequal ends[J].International Journal of Heat and Mass Transfer, 2023:216.
[125] Li H, Zeng Z, Zhang LQ, et al. Effect of rotating magnetic field on the stability of thermocapillary flow in a gallium arsenide liquid bridge between unequal ends [J]. Physics of Fluids, 2023, 35(5):054108.
[124] Wang Y, Zhang LQ, Liu H, et al. Effect of Prandtl number on the flow instabilities in thermocapillary liquid bridges between two coaxial disks with different radii[J]. International Journal of Heat and Mass Transfer, 2023, 205: 123895.
[123] Meng Q, Zhao M, Xu Y, et al. Structure and dynamics of spray detonation in n-heptane droplet/vapor/air mixtures[J]. Combustion and Flame, 2023, 249: 112603.
[122] Chen Z, Zhang LQ, Yang L. Kinetic Theory-Based Methods in Fluid Dynamics[J]. ENTROPY, 2023, 25(2).
2022
[121]Yong Liu 刘勇 a b,Liangqi Zhang 张良奇 a b,Hao Liu 刘浩 c,et al.Influence of aspect ratio on instability of the mixed convection in Czochralski model[J].Journal of Crystal Growth, 2022.
[120] Liu Y , Zhang L , Liu H ,et al.Convective instabilities in the Czochralski model with different radii ratios[J].Physics of Fluids, 2022, 34(11):-.DOI:10.1063/5.0117206.
[119] Li H, Zeng Z, Zhang LQ, Liu H, Liu Y, Wang Y, et al. Instability mechanisms of thermocapillary liquid bridges between disks of unequal radii. Physics of Fluids 2022;34:114109. https://doi.org/10.1063/5.0120825.
[118] Liu Y, Zhang LQ, Liu H, Yin L, Xiao Y, Wang Y, et al. Convective instabilities in the Czochralski model with different radii ratios. Physics of Fluids 2022;34:114108. https://doi.org/10.1063/5.0117206.
[117] Xiao Y, Zeng Z, Zhang LQ, Wang J, Wang Y, Liu H, et al. A highly accurate bound-preserving phase field method for incompressible two-phase flows. Physics of Fluids 2022:5.0103277. https://doi.org/10.1063/5.0103277.
[116] Jun-Jie Huang, Zhang Liangqi "Simplified method for wetting on curved boundaries in conservative phase-field lattice-Boltzmann simulation of two-phase flows with large density ratios", Physics of Fluid(2022);
[115] Wang Yue, Zhang Liangqi*, Liu Hao, Yin Linmao, Xiao Yao, Liu Yong, Zeng Zhong*. Instabilities of thermocapillary flows in large Prandtl number liquid bridges between two coaxial disks with different radii. Physics of Fluids [J].
[114] Qiu R, Huang R, Yao X, Wang J, Zhang Z, Yue J, Zeng Z, et al. Physics-informed neural networks for phase-field method in two-phase flow. Physics of Fluids 2022. https://doi.org/10.1063/5.0091063.
[113] Chen Z, Shu C, Liu YY, Zhang LQ, Zhang ZL, Yuan ZY. Isotherm-evolution-based interface tracking algorithm for modelling temperature-driven solid-liquid phase-change in multiphase flows. International Journal of Thermal Sciences 2022;177:107541.
[112] Xiao Y, Zeng Z, Zhang LQ, Wang J, Wang Y, Liu H, et al. A spectral element-based phase field method for incompressible two-phase flows. Physics of Fluids 2022;34:022114. https://doi.org/10.1063/5.0077372.
[111] Wang Y, Zeng Z, Liu H, Zhang LQ, Yin L, Xiao Y, et al. Flow instabilities in thermocapillary liquid bridges between two coaxial disks with different radii. International Journal of Heat and Mass Transfer 2022;183. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122182.
2021
[110] Wang Y , Zeng Z , Liu H ,et al.Flow instabilities in thermocapillary liquid bridges between two coaxial disks with different radii[J].International Journal of Heat and Mass Transfer, 2022, 183:122182-.DOI:10.1016/j.ijheatmasstransfer.2021.122182.
[109] Yao L, Zeng Z, Liu H, Zhang LQ. Transitions of the Thermocapillary Flow in a Liquid Bridge under the Effect of Non-uniform Rotating Magnetic Field. Microgravity Science and Technology 2021;33. https://doi.org/10.1007/s12217-021-09919-y.
[108] Yao L, Chen Z, Li M, Zeng Z. Study on characteristics of natural ventilation strengthened by solar chimney in underground space. Taiyangneng Xuebao/Acta Energiae Solaris Sinica 2021;42:184–90. https://doi.org/10.19912/j.0254-0096.tynxb.2019-0180.
[107] Qiu Z, Zeng Z, Liu H. A PN×PN-2 Spectral Element Method Based on the Picard Iteration for Steady Incompressible Navier-Stokes Equations. Applied Mathematics and Mechanics 2021;42:142–50. https://doi.org/10.21656/1000-0887.410289.
[106] Liu Y, Zeng Z, Zhang LQ, Liu H, Xiao Y, Wang Y. Effect of crystal rotation on the instability of thermocapillary-buoyancy convection in a Czochralski model. Physics of Fluids 2021;33. https://doi.org/10.1063/5.0062615.
[105] Liu H, Zeng Z, Yin L, Qiu Z, Qiao L. Volume effect on the instabilities of thermocapillary flow in annular pools filled with silicon melt. International Communications in Heat and Mass Transfer 2021;121. https://doi.org/10.1016/j.icheatmasstransfer.2020.105099.
[104] Liu H, Zeng Z, Qiu Z, Yin L, Xiao Y. Thermocapillary Flow Instabilities in a Rotating Annular Pool for Moderate-Prandtl-number Fluid. Microgravity Science and Technology 2021;33. https://doi.org/10.1007/s12217-020-09847-3.
[103] Liu H, Zeng Z, Qiu Z, Yin L. Linear stability analysis of Rayleigh–Bénard convection for cold water near its density maximum in a cylindrical container. International Journal of Heat and Mass Transfer 2021;173. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121240.
[102] Liu H, He J, Zeng Z, Qiu Z. Instabilities of thermocapillary-buoyancy flow in a rotating annular pool for medium-Prandtl-number fluid. Physical Review E 2021;104. https://doi.org/10.1103/PhysRevE.104.035101.
[101] Chen Z, Shu C, Liu YY, Zhang LQ. Ternary phase-field simplified multiphase lattice Boltzmann method and its application to compound droplet dynamics on solid surface in shear flow. Physical Review Fluids 2021;6. https://doi.org/10.1103/PhysRevFluids.6.094304.
2020
[100] Zhang LQ, Chen Z, Yang LM, Shu C. Double distribution function-based discrete gas kinetic scheme for viscous incompressible and compressible flows. Journal of Computational Physics 2020;412. https://doi.org/10.1016/j.jcp.2020.109428.
[99] Tian Z-A, Zeng Z, Liu H, Yin L, Zhang L, Qiao L. Linear Stability Analysis of Thermocapillary Flow in Rotating Shallow Pools Heated from Inner Wall. Journal of Thermal Science 2020;29:251–9. https://doi.org/10.1007/s11630-019-1156-y.
[98] Liu H, Zeng Z, Qiu Z, Yin L, Xiao Y. Effect of rotating magnetic field on instabilities of thermocapillary flow in a Czochralski silicon melt pool. Physics of Fluids 2020;32. https://doi.org/10.1063/5.0024416.
2019
[97] Zu-An T , Zhong Z , Hao L ,et al.Linear Stability Analysis of Thermocapillary Flow in Rotating Shallow PoolsHeated from Inner Wall[J].热科学学报:英文版, 2020, 29(1):251-259.
[96] Zhao Y, Yang S, Zhang LQ, Chew JW. Understanding the varying discharge rates of lognormal particle size distributions from a hopper using the Discrete Element Method. Powder Technology 2019;342:356–70. https://doi.org/10.1016/j.powtec.2018.09.080.
[95] Zhang LQ, Chen Z, Yang LM, Shu C. An improved discrete gas-kinetic scheme for two-dimensional viscous incompressible and compressible flows. Physics of Fluids 2019;31. https://doi.org/10.1063/1.5103229.
[94] Zhang LQ, Chen Z, Shu C, Zhang MQ. A kinetic theory-based axisymmetric lattice Boltzmann flux solver for isothermal and thermal swirling flows. Journal of Computational Physics 2019;392:141–60. https://doi.org/10.1016/j.jcp.2019.04.048.
[93] Zhang LQ, Chen Z, Yang L, Zhang M. An improved axisymmetric lattice Boltzmann flux solver for axisymmetric isothermal/thermal flows. International Journal for Numerical Methods in Fluids 2019;90:632–50. https://doi.org/10.1002/fld.4738.
[92] Qiao L, Zeng Z, Xie H, Liu H, Zhang LQ. Modeling Leidenfrost drops over heated liquid substrates. International Journal of Heat and Mass Transfer 2019;128:1296–306. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.082.
[91] Liu H, Zeng Z, Yin L, Qiu Z, Qiao L. Influence of aspect ratio on the onset of thermocapillary flow instability in annular pool heated from inner wall. International Journal of Heat and Mass Transfer 2019;129:746–52. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.016.
[90] Liu H, Zeng Z, Yin L, Qiu Z, Zhang LQ. Effect of the Prandtl number on the instabilities of the thermocapillary flow in an annular pool. Physics of Fluids 2019;31. https://doi.org/10.1063/1.5087113.
[89] Liu H, Zeng Z, Yin L, Qiu Z, Qiao L. Effect of the crucible/crystal rotation on thermocapillary instability in a shallow Czochralski configuration. International Journal of Thermal Sciences 2019;137:500–7. https://doi.org/10.1016/j.ijthermalsci.2018.12.016.
[88] Li J, Zeng Z, Qiao L. Numerical Simulation of Droplets’ Dynamic Wetting Process With the Phase Field Method. Applied Mathematics and Mechanics 2019;40:957–67. https://doi.org/10.21656/1000-0887.400129.
[87] Chen Z, Shu C, Zhang LQ. A simplified axisymmetric lattice Boltzmann method for incompressible swirling and rotating flows. Physics of Fluids 2019;31. https://doi.org/10.1063/1.5084166.
2018
[86] Zhou P, Zeng Z, Qiao L. Simulation of shear-thinning droplets impact on solid surfaces byusing Lattice Boltzmann method. Chongqing Daxue Xuebao/Journal of Chongqing University 2018;41:1–9. https://doi.org/10.11835/j.issn.1000-582X.2018.12.001.
[85] Zhao Y, Yang S, Zhang L, Chew JW. DEM study on the discharge characteristics of lognormal particle size distributions from a conical hopper. AIChE Journal 2018;64:1174–90. https://doi.org/10.1002/aic.16026.
[84] Zhang L, Yang S, Zeng Z, Chew JW. Lattice model effects on the accuracy of the boundary condition implementations for the convection–diffusion lattice Boltzmann method. Computers and Fluids 2018;176:153–69. https://doi.org/10.1016/j.compfluid.2018.08.029.
[83] Zhang L, Yang S, Zeng Z, Chew JW. Consistent second-order boundary implementations for convection-diffusion lattice Boltzmann method. Physical Review E 2018;97. https://doi.org/10.1103/PhysRevE.97.023302.
[82] Zhang L, Yang S, Zeng Z, Chew JW. Consistent boundary conditions of the multiple-relaxation-time lattice Boltzmann method for convection–diffusion equations. Computers and Fluids 2018;170:24–40. https://doi.org/10.1016/j.compfluid.2018.04.027.
[81] Zhang L, Yang S, Zeng Z, Chew JW. An alternative implementation of the kinetic theory based axisymmetric lattice Boltzmann model. Computers and Mathematics with Applications 2018;76:1388–407. https://doi.org/10.1016/j.camwa.2018.06.032.
[80] Yang S, Zhang L, Luo K, Chew JW. DEM investigation of the axial dispersion behavior of a binary mixture in the rotating drum. Powder Technology 2018;330:93–104. https://doi.org/10.1016/j.powtec.2018.02.021.
[79] Yang LM, Chen Z, Shu C, Yang WM, Wu J, Zhang LQ. Improved fully implicit discrete-velocity method for efficient simulation of flows in all flow regimes. Physical Review E 2018;98. https://doi.org/10.1103/PhysRevE.98.063313.
[78] Wang L, Zeng Z, Zhang L, Qiao L, Zhang Y, Lu Y. A new boundary scheme for simulation of gas flow in kerogen pores with considering surface diffusion effect. Physica A: Statistical Mechanics and Its Applications 2018;495:180–90. https://doi.org/10.1016/j.physa.2017.12.028.
[77] Qiao L, Zeng Z, Xie H, Zhang L, Wang L, Lu Y. Modeling thermocapillary migration of interfacial droplets by a hybrid lattice Boltzmann finite difference scheme. Applied Thermal Engineering 2018;131:910–9. https://doi.org/10.1016/j.applthermaleng.2017.12.034.
[76] Liu H, Zeng Z, Yin L, Qiao L, Zhang L. Instability mechanisms for thermocapillary flow in an annular pool heated from inner wall. International Journal of Heat and Mass Transfer 2018;127:996–1003. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.134.
2017
[75] Zhou T, Zeng Z. Optimal aerodynamic design for formula SAE car using curved wings. Chongqing Daxue Xuebao/Journal of Chongqing University 2017;40:40–52. https://doi.org/10.11835/j.issn.1000-582X.2017.10.005.
[74] Zhang Y, Zeng Z, Yao L, Yokota Y, Kawazoe Y, Yoshikawa A. Skin effect of rotating magnetic fields in liquid bridge. Journal of Magnetics 2017;22:333–43. https://doi.org/10.4283/JMAG.2017.22.2.333.
[73] Zhang Y, Zeng Z, Yao L, Qiao L, Yin L, Lu Y. Modelling the rotating magnetic field with the skin effect. International Journal of Applied Electromagnetics and Mechanics 2017;53:283–302. https://doi.org/10.3233/JAE-160041.
[72] Zhang L, Zeng Z, Xie H, Qiu Z, Yao L, Zhang Y, et al. An Alternative Lattice Boltzmann Model for Incompressible Flows and its Stabilization. Communications in Computational Physics 2017;21:443–65. https://doi.org/10.4208/cicp.091014.030515a.
[71] Zhang L, Yang S, Zeng Z, Chen J, Yin L, Chew JW. Forcing scheme analysis for the axisymmetric lattice Boltzmann method under incompressible limit. Physical Review E 2017;95. https://doi.org/10.1103/PhysRevE.95.043311.
[70] Zhang L, Yang S, Zeng Z, Chen J, Wang L, Chew JW. Alternative extrapolation-based symmetry boundary implementations for the axisymmetric lattice Boltzmann method. Physical Review E 2017;95. https://doi.org/10.1103/PhysRevE.95.043312.
[69] Zhang L, Yang S, Zeng Z, Chen J, Wang L, Chew JW. A comparative study of the axisymmetric lattice Boltzmann models under the incompressible limit. Computers and Mathematics with Applications 2017;74:817–41. https://doi.org/10.1016/j.camwa.2017.05.028.
[68] Yokota Y, Kudo T, Ohashi Y, Kurosawa S, Kamada K, Zeng Z, et al. Effects of dopant distribution improvement on optical and scintillation properties for Ce-doped garnet-type single crystals. Journal of Materials Science: Materials in Electronics 2017;28:7151–6. https://doi.org/10.1007/s10854-017-6696-x.
[67] Yokota Y, Kudo T, Chani V, Ohashi Y, Kurosawa S, Kamada K, et al. Improvement of dopant distribution in radial direction of single crystals grown by micro-pulling-down method. Journal of Crystal Growth 2017;474:178–82. https://doi.org/10.1016/j.jcrysgro.2016.11.119.
[66] Yao L, Zeng Z, Zhang L, Lei C. Convection and instability of thermocapillary flow in a liquid bridge subject to a non-uniform rotating magnetic field. International Communications in Heat and Mass Transfer 2017;87:52–60. https://doi.org/10.1016/j.icheatmasstransfer.2017.06.014.
[65] Yang S, Zhang L, Sun Y, Chew JW. Improving the operational stability of the multi-chamber spout-fluid bed via the insertion of a submerged partition plate. AIChE Journal 2017;63:485–500. https://doi.org/10.1002/aic.15427.
[64] Yang S, Zhang L, Luo K, Chew JW. DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum. Physics of Fluids 2017;29. https://doi.org/10.1063/1.5008297.
[63] Yang S, Sun Y, Zhang L, Chew JW. Segregation dynamics of a binary-size mixture in a three-dimensional rotating drum. Chemical Engineering Science 2017;172:652–66. https://doi.org/10.1016/j.ces.2017.07.019.
[62] Yang S, Sun Y, Zhang L, Chew JW. Numerical study on the axial segregation dynamics of a binary-size granular mixture in a three-dimensional rotating drum. Physics of Fluids 2017;29. https://doi.org/10.1063/1.5004663.
[61] Yang S, Sun Y, Zhang L, Chew JW. Impact of granular segregation on the solid residence time and active-passive exchange in a rotating drum. Chemical Engineering Science 2017;173:287–302. https://doi.org/10.1016/j.ces.2017.07.036.
[60] Yang S, Sun Y, Zhang L, Chew JW. Impact of draft plate on the inter-chamber interaction in a two-chamber spout-fluid bed. Applied Thermal Engineering 2017;119:490–504. https://doi.org/10.1016/j.applthermaleng.2017.03.096.
2016
[59] Zhang L, Yang S, Zeng Z, Yin L, Zhao Y, Chew JW. Consistent lattice Boltzmann methods for incompressible axisymmetric flows. Physical Review E 2016;94. https://doi.org/10.1103/PhysRevE.94.023302.
[58] Zhang L, Yang S, Zeng Z, Yao L, Chew JW. Alternative kinetic theory based lattice Boltzmann model for incompressible axisymmetric flows. Computers and Mathematics with Applications 2016;72:2751–72. https://doi.org/10.1016/j.camwa.2016.09.028.
[57] Zeng Z, Qiao L, Liu Y, Yokota Y, Kawazoe Y, Yoshikawa A. Numerical study on the radial dopant distribution in micro-pulling-down crystal growth. Journal of Crystal Growth 2016;434:110–5. https://doi.org/10.1016/j.jcrysgro.2015.10.029.
[56] Yin L, Zeng Z, Qiu Z, Mei H, Zhang L, Zhang Y. Linear stability analysis of thermocapillary flow in a slowly rotating shallow annular pool using spectral element method. International Journal of Heat and Mass Transfer 2016;97:353–63. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.031.
[55] Yao LP, Zeng Z, Zhang LQ, Lu YY, Lei C. Investigation of the thermocapillary flow in a liquid bridge subject to a non-uniform rotating magnetic field, 2016.
[54] Yang S, Sun Y, Zhang L, Zhao Y, Chew JW. Numerical investigation on the effect of draft plates on spouting stability and gas-solid characteristics in a spout-fluid bed. Chemical Engineering Science 2016;148:108–25. https://doi.org/10.1016/j.ces.2016.03.010.
[53] Yang S, Sun Y, Zhang L, Chew JW. Computational study of the effect of draft plates on the solid behavior in a spout-fluid bed. Industrial and Engineering Chemistry Research 2016;55:12598–615. https://doi.org/10.1021/acs.iecr.6b02732.
[52] Xie H, Zeng Z, Zhang L, Yokota Y, Kawazoe Y, Yoshikawa A. Simulation on Thermocapillary-Driven Drop Coalescence by Hybrid Lattice Boltzmann Method. Microgravity Science and Technology 2016;28:67–77. https://doi.org/10.1007/s12217-015-9483-4.
[51] Wang L, Zeng Z, Zhang L, Xie H, Liang G, Lu Y. A lattice Boltzmann model for thermal flows through porous media. Applied Thermal Engineering 2016;108:66–75. https://doi.org/10.1016/j.applthermaleng.2016.07.092.
[50] Mei H, Wang F, Zeng Z , Qiu Z, Yin L, Li L. A global spectral element model for poisson equations and advective flow over a sphere. Advances in Atmospheric Sciences 2016;33:377–90. https://doi.org/10.1007/s00376-015-5001-2.
2015
[49] Zhang L, Zeng Z, Xie H, Tao X, Zhang Y, Lu Y, et al. An alternative second order scheme for curved boundary condition in lattice Boltzmann method. Computers and Fluids 2015;114:193–202. https://doi.org/10.1016/j.compfluid.2015.03.006.
[48] Xie H-Q, Zeng Z, Zhang L-Q. Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow. Chinese Physics B 2015;25. https://doi.org/10.1088/1674-1056/25/1/014702.
[47] Xie H, Zeng Z, Zhang L, Lu Y. Lattice Boltzmann simulation of the thermocapillary flow in an annular two liquid layers system with deformable interface. International Communications in Heat and Mass Transfer 2015;68:78–84. https://doi.org/10.1016/j.icheatmasstransfer.2015.08.006.
[46] Qiao L, Zeng Z, Xie H. Phase-field-based Finite Volume Method for Simulating Thermocapillary Flows. vol. 126, 2015, p. 507–11. https://doi.org/10.1016/j.proeng.2015.11.292.
2014
[45] Zhang L, Zeng Z, Xie H, Tao X, Zhang Y, Lu Y, et al. An alternative lattice Boltzmann model for three-dimensional incompressible flow. Computers and Mathematics with Applications 2014;68:1107–22. https://doi.org/10.1016/j.camwa.2014.08.009.
[44] Zhang L, Zeng Z, Xie H, Zhang Y, Lu Y, Yoshikawa A, et al. A comparative study of lattice Boltzmann models for incompressible flow. Computers and Mathematics with Applications 2014;68:1446–66. https://doi.org/10.1016/j.camwa.2014.09.010.
2013
[43] Mei H, Zeng Z, Qiu Z-H, Li L, Yao L-P. Comparison of the Fourier-Legendre spectral element method and the finite difference method on the numerical diffusion in polar coordinate. Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics 2013;30:406–11. https://doi.org/10.7511/jslx2013015.
[42] Mei H, Zeng Z, Qiu Z, Yao L, Li L. Numerical simulations of two dimensional mixed flows of buoyant and thermocapillary convection in crystal growth. vol. 216 LNEE. 2013. https://doi.org/10.1007/978-1-4471-4856-2_35.
[41] Mei H, Zeng Z, Qiu Z, Li L, Yao L, Mizuseki H, et al. Numerical simulation of crucible rotation in high-temperature solution growth method using a Fourier-Legendre spectral element method. International Journal of Heat and Mass Transfer 2013;64:882–91. https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.018.
[40] Liang G, Zeng Z, Chen Y, Ohashi H, Chen S. Simulation of self-assemblies of colloidal particles with different sizes by using a lattice Boltzmann Pseudo-solid model. International Journal of Modern Physics C 2013;24. https://doi.org/10.1142/S0129183113400020.
[39] Liang G, Zeng Z, Chen Y, Onishi J, Ohashi H, Chen S. Simulation of self-assemblies of colloidal particles on the substrate using a lattice Boltzmann pseudo-solid model. Journal of Computational Physics 2013;248:323–38. https://doi.org/10.1016/j.jcp.2013.04.007.
2012
[38] Zhang Y, Zeng Z, Chen J. The improved space-time conservation element and solution element scheme for two-dimensional dam-break flow simulation. International Journal for Numerical Methods in Fluids 2012;68:605–24. https://doi.org/10.1002/fld.2525.
[37] Yao L-P, Zeng Z, Zhang Y-X. Effects of transverse rotating magnetic field on thermocapillary flow under microgravity. Chongqing Daxue Xuebao/Journal of Chongqing University 2012;35:115–20.
[36] Yao L, Zeng Z, Zhang Y, Qiu Z, Mizuseki H, Kawazoe Y. Three-dimensional unsteady thermocapillary flow under rotating magnetic field. Crystal Research and Technology 2012;47:816–23. https://doi.org/10.1002/crat.201200029.
[35] Yao L, Zeng Z, Zhang Y, Qiu Z, Mei H, Zhang L, et al. Influence of rotating magnetic field strength on three-dimensional thermocapillary flow in a floating half-zone model. Heat and Mass Transfer/Waerme- Und Stoffuebertragung 2012;48:2103–11. https://doi.org/10.1007/s00231-012-1051-5.
[34] Yao L, Zeng Z, Chen J, Li L, Mizuseki H, Kawazoe Y. Investigation of convection control under the non-uniform RMF in a liquid bridge. vol. 31, 2012, p. 659–64. https://doi.org/10.1016/j.proeng.2012.01.1082.
[33] Xie H-Q, Zeng Z, Zhang L-Q, Liang G-Y, Mizuseki H, Kawazoe Y. Multi-relaxation-time lattice Boltzmann front tracking method for two-phase flow with surface tension. Chinese Physics B 2012;21. https://doi.org/10.1088/1674-1056/21/12/124703.
[32] Qiu Z, Zeng Z, Mei H, Yao L, Liu Q. A spectral element method for the numerical simulation of axisymmetric flow in Czochralski crystal growth. vol. 452–453. 2012. https://doi.org/10.4028/www.scientific.net/AMR.452-453.1195.
[31] Qiu Z, Zeng Z, Mei H, Li L, Yao L, Zhang L. A Fourier-Legendre spectral element method in polar coordinates. Journal of Computational Physics 2012;231:666–75. https://doi.org/10.1016/j.jcp.2011.10.003.
[30] Mei H, Zeng Z, Qiu Z-H, Yao L-P, Li L. A Legendre spectral element method for solving Poisson-type equation in polar coordinates. Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics 2012;29:641-645+674.
[29] Liang G, Zeng Z, Yao L, Zhang L, Qiu Z, Mei H. Simulation of thermocapillary flow in a two dimensional cavity with lattice Boltzmann method. Chongqing Daxue Xuebao/Journal of Chongqing University 2012;35:106–13.
[28] Li L, Zeng Z, Yao L-P, Chen C-B, Chen J-Q. Thermocapillary flow in liquid bridge under magnetic field generated by combined coil configurations. Gongcheng Lixue/Engineering Mechanics 2012;29:39–44. https://doi.org/10.6052/j.issn.1000-4750.2010.12.0868.
[27] Yao LP, Zeng Z, Chen JQ, Chen CB, Li L, Mizuseki H, et al. Effect of rotating magetic field on three-dimensional instabilities of thermocapillary convection under microgravity. vol. 1376, 2011, p. 114–6. https://doi.org/10.1063/1.3651850.
[26] Yao L, Zeng Z, Li X, Chen J, Zhang Y, Mizuseki H, et al. Effects of rotating magnetic fields on thermocapillary flow in a floating half-zone. Journal of Crystal Growth 2011;316:177–84. https://doi.org/10.1016/j.jcrysgro.2010.12.065.
[25] Liang G-Y, Zeng Z, Zhang L-Q, Xie H-Q. A three dimensional parallel implementation of lattice Boltzmann method. Shuidonglixue Yanjiu Yu Jinzhan/Chinese Journal of Hydrodynamics Ser A 2011;26:531–7. https://doi.org/10.3969/j.issn1000-4874.2011.05.003.
[24] Li X, Zeng Z, Yao L, Li L, Chen C, Zhang Y, et al. Influence of transverse magnetic field on thermocapillary flow in liquid bridge. Crystal Research and Technology 2011;46:249–54. https://doi.org/10.1002/crat.201000663.
[23] Yao L, Zeng Z, Mizuseki H, Kawazoe Y. Effects of rotating magnetic fields on thermocapillary flow: Comparison of the infinite and the Φ1-Φ2 models. International Journal of Thermal Sciences 2010;49:2413–8. https://doi.org/10.1016/j.ijthermalsci.2010.07.017.
[22] Wen C, Zhang Y-X, Chen J-Q, Zeng Z. Numerical simulation of dam-break flows in curved and furcated channels by using space-time Conservation Element and Solution Element method. Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics 2010;27:435–41.
[21] Chen C, Zeng Z, Mizuseki H, Kawazoe Y. Thermocapillary convection of liquid bridge under axisymmetric magnetic fields. Materials Transactions 2008;49:2566–71. https://doi.org/10.2320/matertrans.MB200830.
[20] Zeng Z, Mizuseki H, Chen J, Ichinoseki K, Kawazoe Y. Oscillatory thermocapillary convection in liquid bridge under microgravity. Materials Transactions 2004;45:1522–7. https://doi.org/10.2320/matertrans.45.1522.
[19] Zeng Z, Chen J, Mizuseki H, Fukuda T, Kawazoe Y. Three-dimensional unsteady convection in LiCaAlF6-Czochralski growth. Journal of Crystal Growth 2004;266:81–7. https://doi.org/10.1016/j.jcrysgro.2004.02.086.
[18] Zeng Z, Chen J, Mizuseki H, Sato H, Shimamura K, Ichinoseki K, et al. Numerical study on LiCaAlF6 czochralski crystal growth. Materials Transactions 2004;45:1515–21. https://doi.org/10.2320/matertrans.45.1515.
[17] Chen J-Q, Zhao W-X, Zeng Z. Theoretical and numerical analysis of the factual focus location in ESWL. Chinese Journal of Biomedical Engineering 2004;23:247–51.
[16] Zeng Z, Chen J, Mizuseki H, Shimamura K, Fukuda T, Kawazoe Y. Three-dimensional oscillatory convection of LiCaAlF6 melts in Czochralski crystal growth. Journal of Crystal Growth 2003;252:538–49. https://doi.org/10.1016/S0022-0248(03)00949-7.
[15] Zeng Z, Chen J, Mizuseki H, Shishido T, Ichinoseki K, Kawazoe Y. Marangoni convection in the LiCaAIF6 crystal growth by the czochralski technique. Journal of Thermal Science 2003;12:348–52.
[14] Zeng Z, Mizuseki H, Shimamura K, Fukuda T, Kawazoe Y, Higashino K. Usefulness of experiments with model fluid for thermocapillary convection - Effect of Prandtl number on two-dimensional thermocapillary convection. Journal of Crystal Growth 2002;234:272–8. https://doi.org/10.1016/S0022-0248(01)01700-6.
[13] Zeng Z, Chen J, Mizuseki H, Shishido T, Ichinoseki K, Kawazoe Y. Marangoni Convection in the LiCaAIF6 Crystal Growth by the Czochralski Technique. Journal of Thermal Science 2002;11:348–52. https://doi.org/10.1007/s11630-002-0048-7.
[12] Zeng Z, Mizuseki H, Simamura K, Fukuda T, Higashino K, Kawazoe Y. Three-dimensional oscillatory thermocapillary convection in liquid bridge under microgravity. International Journal of Heat and Mass Transfer 2001;44:3765–74. https://doi.org/10.1016/S0017-9310(01)00012-6.
[11] Zeng Z, Mizuseki H, Shimamura K, Higashino K, Fukuda T, Kawazoe Y. Marangoni convection in model of floating zone under microgravity. Journal of Crystal Growth 2001;229:601–4. https://doi.org/10.1016/S0022-0248(01)01236-2.
[10] Zeng Z, Mizuseki H, Higashino K, Shimamura K, Fukuda T, Kawazoe Y. Structure similarity of mixed buoyancy-thermocapillary flow in half-zone liquid bridge. Materials Transactions 2001;42:2322–31. https://doi.org/10.2320/matertrans.42.2322.
[9] Guo Y, Lu J-Q, Zeng Z, Wang Q, Gu B-L, Kawazoe Y. Quantum size effect and temperature effect on spin-polarized transport in ZnSe/Zn1-xMnxSe multilayers. Physics Letters, Section A: General, Atomic and Solid State Physics 2001;284:205–15. https://doi.org/10.1016/S0375-9601(01)00285-7.
[8] Zeng Z, Mizuseki H, Ichinoseki K, Higashino K, Kawazoe Y. Marangoni convection in half-zone liquid bridge. Materials Transactions, JIM 1999;40:1331–6. https://doi.org/10.2320/matertrans1989.40.1331.
[7] Zeng Z, Mizuseki H, Higashino K, Kawazoe Y. Numerical simulation of oscillatory thermocapillary convection in liquid bridge. Proceedings of SPIE - The International Society for Optical Engineering 1999;3792:353–62.
[6] Zeng Z, Mizuseki H, Ichinoseki K, Higashino K, Kawazoe Y. Numerical simulation of convection depth in shear cell under microgravity. Advances in Space Research 1999;24:1321–4. https://doi.org/10.1016/S0273-1177(99)00740-1.
[5] Zeng Z, Mizuseki H, Higashino K, Kawazoe Y. Direct numerical simulation of oscillatory Marangoni convection in cylindrical liquid bridges. Journal of Crystal Growth 1999;204:395–404. https://doi.org/10.1016/S0022-0248(99)00207-9.
[4] Guo Y, Gu B-L, Zeng Z, Kawazoe Y. Erratum: Size effect on quasibound states and negative differential resistances in step-barrier structures (Physics Letter A (1999) 261: (114-118) PII: S037596019900568X). Physics Letters, Section A: General, Atomic and Solid State Physics 1999;264:249. https://doi.org/10.1016/S0375-9601(99)00811-7.
[3] Zeng Z, Mizuseki H, Ichinoseki K, Kawazoe Y, Higashino K. Numerical study of dynamic behavior of melting sample in shear cell under microgravity. Numerical Heat Transfer; Part A: Applications 1998;34:709–18. https://doi.org/10.1080/10407789808914011.
[2] Wang Q, Sun Q, Yu JZ, Zeng Z, Kawazoe Y. The local magnetism of Fe impurity in Nbn and NbnMom clusters. Journal of Magnetism and Magnetic Materials 1998;184:106–10. https://doi.org/10.1016/S0304-8853(97)01098-6.
[1] Guo Y, Gu B-L, Yu J-Z, Zeng Z, Kawazoe Y. Resonant tunneling in step-barrier structures under an applied electric field. Journal of Applied Physics 1998;84:918–24. https://doi.org/10.1063/1.368156.
中文期刊
24. 陈黎明,张良奇,王小双,等.一种精确的含可溶性表面活性剂两相流动相场方法[J/OL].应用数学和力学,1-26[2024-08-28].
23. 张少松,张良奇,陈黎明,等.基于WENO格式有限体积法的铁磁流体两相流相场方法[J/OL].重庆大学学报,1-17[2024-08-28].
22. 周游、曾忠*、刘浩、张良奇,高径比对 GaAs 熔体液桥热毛细对流失稳的影响,力学学报,54/2 (2022) 301-315.
21. 颜永松、王维朗、薛婧媛、游滨、曾忠、侯湘,学术期刊同行评议中不端行为的应对策略,编辑学报,33/04 (2021) 426-429.
20. 姚丽萍*、陈震寰、李明生、曾忠, 太阳能烟囱强化地下空间自然通风特性的研究[J]. 太阳能学报, 42/6 (2021) 184-190.
19. 邱周华*、曾忠、刘浩, 基于Picard迭代的PN×PN-2谱元法求解定常不可压缩 Navier-Stokes方程, 应用数学和力学,42/2 (2021) 142-150.
18. 李家宇、曾忠*、乔龙, 相场方法模拟液滴的动态润湿行为,应用数学和力学,40/9 (2019) 957-967.
17. 周平、曾忠*、乔龙, 假塑性流体液滴撞击壁面上的铺展的格子Boltzmann模拟, 重庆大学学报,41/12 (2018) 1-9.
16. 周涛*、曾忠,FSAE赛车新型曲面前翼尾翼气动优化设计,重庆大学学报, 40/10 (2017) 40-52.
15. 屈菁菁、曾忠*、乔龙、付昌禄、丁雨憧,微下拉法YAG晶体生长数值模拟,应用数学和力学, 37/6 (2016) 574-583.
14. 刘亚平、曾忠*、许小龙、张臻、屈菁菁, 不同结构的板翅式油冷器单层冷却液侧换热特性的数值模拟, 应用数学和力学, 35/7 (2014) 815-822.
13. 梁功有、曾忠*、张永祥、张良奇、谢海琼、陈昱, 两球形颗粒间横向毛细力的格子Boltzmann研究, 应用数学和力学, 34/5(2013)445-453.
12. 梅欢*、曾忠、邱周华、李亮、姚丽萍, 极坐标系下Fourier-Legendre谱元方法与有限差分法数值扩散的比较, 计算力学学报,30/3 (2013) 406-411.
10. 李亮、曾忠*、姚丽萍、陈朝波、陈景秋,组合线圈磁场对液桥表面张力流的影响, 工程力学 29-8 (2012)39-44.
9. 梅欢*、曾忠、邱周华,极坐标系下的Legendre谱元方法求解Poisson-型方程,计算力学学报. 29/5 (2012) 641-645.
8. 梁功有、曾忠*、姚丽萍、张良奇、邱周华、梅欢,二维方腔内热表面张力流的格子Boltzmann方法模拟,重庆大学学报 35/9 (2012) 106-113.
7. 姚丽萍、曾忠*、张永祥,微重力环境下横向旋转磁场对热表面张力流的影响,重庆大学学报, 35(2012)115-120.
6. 李亮、曾忠*、时洪宇、赵前成、成宝江、陈杰富、周武. 600MW超临界CFB锅炉中振荡对流分析, 西南大学学报(自然科学版), 33 (2011) 152-159.
5. 梁功有、曾忠*、张良奇、谢海琼,格子Boltzmann方法三维并行程序设计, 水动力学研究与进展A辑, 26/5 (2011) 531-537.
4. 文岑、张永祥*、陈景秋、曾忠,用CE/SE法对弯曲与分叉河道的溃坝洪水波的数值研究,计算力学学报,27/3 (2010) 435-441.
3. 张尚中*、曾忠、张永祥、邱周华、时洪宇, Czochralski法晶体生长全局数值模拟, 重庆交通大学学报,28 (2009) 355-357.
2. 曾忠*、龙庆会、陈景秋, 基于64位CPU系统的计算性能比较: Opteron vs. Xeon, 计算机工程与应用, 43/19 (2007) 98-103.
1.陈景秋、赵万星、曾忠,ESWL的实际焦点位置的理论和数值分析,中国生物医学工程学报,23/3 (2004) 247-251.
书籍章节:
1. Z. Zeng, H. Mizuseki, and Y. Kawazoe, Oscillatory convection of LiCaAlF6 melt in Czochralski model, 书籍 Studies on Flow Instabilities in Bulk Crystal Growth, 2007: 39-56, Editor A. Gelfgal ISBN: 81-7895-277-7, Transworld Research Network.
学术会议报告
[35]李湘帆,张良奇,磁注液面上Rosensweig不稳定性的仿真研究,第十三届全国流体力学学术会议,哈尔滨,2024年8月 9日-13日,报告人李湘帆
[34]孙漫漫,曾忠,磁场下两相铁磁流体润湿动力学行为研究,第十三届全国流体力学学术会议,哈尔滨,2024年8月9日-13日,报告人孙漫漫
[33]万宇健,张良奇,耦合质量输运的多相流数值模拟,第十三届全国流体力学学术会议,哈尔滨,2024 年8月9日-13日,报告人万宇健
[32]肖姚,张登龙,张良奇,A reductio-consistent phase field model for non-isothermal incompressible N-phase flows,第六届国际液滴会议,北京,2023年8月27-30日,报告人张登龙(英文报告)
[31]陈铄,曾忠,非等径砷化镓液桥热毛细对流的动态模式分解,第十三届全国微重力科学学术会议暨空间材料-空间生命-微重力科学前沿交叉论坛,哈密,2023年7月11-15日,报告人陈铄(优秀青年论文奖)
[30] 王小双,张良奇,相场两相流求解器的开发与验证,第二十届全国计算流体力学会议,哈尔滨,2023年6月25日-27日,报 告人王小双(优秀青年论文奖)
[29] 曾忠,刘浩 普朗特数对环形液池内热毛细对流不稳定性及失稳机制的影响,第十二届南方计算力学学术会议(邀请报告),武汉,2019年11月15-18日。
[28] Liangqi Zhang, Zhong Zeng, Haiqiong Xie, Gongyou Liang, Hiroshi Mizuseki, Yoshiyuki Kawazoe An improved lattice Boltzmann model for incompressible flow, 23rd International congress of Theoretic and Applied Mechanics, Beijing, China, August 19-24,2012.(英文报告).
[27] Hao Liu, Zhong Zeng, Volume effect of thermocapillary flow instability in annular pool for low-Prandtl-number melt, 12th Asian Microgravity Symposium (AMS), Zhuhai, China, November 12-16, 2018. 报告人刘浩
[26] 刘浩,曾忠,旋转对提拉法结构浅液池内热毛细对流稳定性的影响,第一届中国空间科学大会,厦门,10月25日-28日,2019年。报告人刘浩
[25] 乔龙,曾忠,谢海琼,界面微液滴热毛细迁移及操 控数值模拟,重庆力学学会 2017 年学术年会,重庆,5月13日,2017年。报告人乔龙
[24] 乔龙,LBM方法多相流及传热传质青年研讨会,西安,7月16日-21日, 2017年
[23] 乔龙,曾忠, 谢海琼,两相及多相流体热毛细流数值模拟(三相流体热毛细流数值模拟),第十届全国微重力科学学术会议,银川,2017年8月18日-22日。报告人乔龙
[22] 尹林茂,曾忠,刘浩,旋转环形浅液池内热毛细流的失稳机理研究,第十届全国微重力科学学术会议,银川,2017年8月18日-22日。
[21] 张易,曾忠,趋肤效应对旋转磁场作用下提拉法结构浅液池热毛细流的影响,第十届全国微重力科学学术会议,银川,2017年8月18日-22日。
[20] 周平, 2016 谱方法及其应用春季班,北京计算科学研究中心,北京,中国,04, 2016
[19] Hao Liu, Zhong Zeng, Long Qiao, Effect of rotating magnetic field on the thermocapillary flow instability in a liquid bridge, 9th Conference of the International Marangoni Association (IMA), Guilin, China, August 31–September 5, 2018. 报告人刘浩
[18] 尹林茂, 2016 谱方法及其应用春季班,北京计算科学研究中心,北京,中国,04, 2016
[17] 乔龙,微尺度多相流动及界面效应高级讲习班,合肥,7月 23日-26日, 2016年
[16] 刘浩, 2016 谱方法及其应用春季班,北京计算科学研究中心,北京,中国,04, 2016
[15] 刘浩,第十届全国微重力科学学术会议,银川,8月18日至22日,2017年
[14] Long Qiao, Zhong Zeng, Haiqiong Xie, Phase-field-based Finite Volume Method for Simulating Thermocapillary Flows, 7th International Conference on Fluid Mechanics (ICFM7), Qingdao, China, May 24-27, 2015.
[13] Linmao Yin, Zhong Zeng, Long Qiao, Yi Zhang, Linear stability analysis of thermocapillary flow using a spectral element method, 6th China-Germany Workshop on Microgravity and Space Life Sciences, Hangzhou, China, September 26-28, 2015. 报告人尹林茂
[12] Linmao Yin, Zhong Zeng, Liangqi Zhang, The 7th International Conference on Fluid Mechanics, Qingdao, Shandong, China, 05, 2015. 报告人尹林茂
[11] Long Qiao, Zhong Zeng and Haiqiong Xie, Phase-field-based finite volume method for simulating thermocapillary flows, 7th International Conference on Fluid Mechanics, Qingdao, China, May 24-27, 2015. 报告人乔龙
[10] liangqi Zhang, Zhong Zeng, Comparisons of Lattice Boltzmann Models for Incompressible Flow, 2014 Conference on Computational Mechanics (CCM), Suzhou, China May 16-18, 2014..
[9] Zhong Zeng, Long Qiao, Yaping Liu, Yuui Yokota, Yoshi Kawazoe, Akira Yoshikawa, Modified Micro-Pulling Down Crystal Growth Method to Improve theRadial Distribution of Dopant, The 9th General Meeting of ACCMS-VO , Okinawa, JAPAN, December 20-22, 2014.
[8] Liangqi Zhang, Zhong Zeng, Comparisons of Lattice Boltzmann Models for Incompressible Flow, 2014 Conference on Computational Mechanics (CCM), Suzhou, 05, 2014.(英文报告).
[7] Liangqi Zhang, Eighth International Conference on Computational Fluid Dynamics, Chengdu, 07, 2014.
[6] Huan Mei, Zhong Zeng, Zhouhua Qiu, Liangqi Zhang, Zu’an Tian, Linmao Yin, Linear stability analysis of lid-driven cavity flow using a spectral element method, 23rd International congress of Theoretic and Applied Mechanics,Beijing, China, August 19-24,2012
[5] Liangqi Zhang, Zhong Zeng, Haiqiong Xie, Gongyou Liang, Hiroshi Mizuseki, Yoshiyuki Kawazoe, An improved lattice Boltzmann model for incompressible flow, 23rd International congress of Theoretic and Applied Mechanics,Beijing, China, August 19-24,2012
[4] Zhouhua Qiu, Zhong Zeng, Huan Mei, Hiroshi Mizuseki, Yoshiyuki Kawazoe,An advantage of spectral element method for solving incompressible Navier-Stokes equations, 23rd International congress of Theoretic and Applied Mechanics,Beijing, China, August 19-24,2012
[3] 张良奇, 曾忠, 梁功有, 谢海琼, 一个改进的不可压缩格子Boltzmann 模型, 2012年全国计算力学大会, 重庆, 11, 2012.(中文报告).
[2] 张良奇, 曾忠, 一个新的不可压缩格子Boltzmann 模型, 2014年五校航空航天及力学学术论坛, 重庆, 04, 2014.(中文报告).
[1] Zhong Zeng,Liping Yao, Hiroshi Mizuseki and Yoshiyuki Kawazoe, Convection control by rotating magnetic field in floating zone model, The Sixth General Meeting of ACCMS-VO, Sendai-Matsushima, JAPAN,February 10th-12th, 2012
[3] Liangqi Zhang, Haiqiong Xie, 2014 Summer School and International Symposium on Fundamental Issues of Multiphase Flows, Wuhan, China, 06, 2014.
[2] Liangqi Zhang, Haiqiong Xie, 2012 Summer School on the Lattice Boltzmann Method, Beijing, China, 07, 2012.
[1] Liangqi Zhang, Haiqiong Xie, 2011 Summer School on the Lattice Boltzmann Method, Beijing, China, 05, 2011.