5536
当前位置: 首页   >  成果及论文
成果及论文

#共同第一作者;*通讯作者)

2024:

[44] Encapsulation of ruthenium oxide nanoparticels in nitrogen-doped porous carbon polyhedral for pH-universal hydrogen evolution electrocatalysis

       Zhang Z., Tang S., Xu L.*, Wang J., Li A., Jing M.*, Yang X.*, Song F.* Internation Journal of Hydrogen Energy, 2024, 74, 10.

[43] Pt-Decorated bimetallic PdRu nanocubes with tailorable surface electronic structures for highly efficient acidic hydrogen evolution reaction

      Xiao X., Shang Y., Bai Y., Miao H., Lu X., Lee K., Ahn J-P., Younis O.*, Yu T.*, Yang X.* International Journal of Hydrogen Energy, 2024, 71, 1026.

2023:

[42] 氨氢融合新能源交叉科学前沿战略研究

       张莉*, 薛勃飞*, 刘玉新, 王宇, 吴云, 张华, 杨新春, 何帅, 蒋三平, 李骏张清杰*, 科学通报, 2023, 68(23), 3107. 

[41] Cooperative cage hybrids enabled by electrostatic marriage

      Zhu L., Yang X.*, Sun J.* Chemical Communications, 2023, 59, 6020. 

[40] Porous organic cages

       Yang X.#, Ullah Z.#, Stoddart J. F.*, Yavuz C. F.* Chemical Reviews, 2023, 123, 4602.

2022

[39] Recent advances in transition metal nitrides for hydrogen electrocatalysis in alkaline media: from catalyst design to application

       Tang S., Zhang Z., Xiang J.*, Yang X.*, Shen X., Song F.* Frontiers in Chemistry, 2022, 10, 1073175.

[38] New liquid chemical hydrogen storage technology

     Yang X.*, Bulushev D.*, Yang J., Zhang Q. Energies, 2022, 15(17), 6360.

[37] Toward the controlled synthesis of highly dispersed metal clusters enabled by downsizing crystalline porous organic cage support

        Zhu L., Zhang S., Yang X., Zhuang Q., Sun J.* Small Methods, 2022, 6(8), 2200591. 


2012-2021:

[36] Interfacing with Fe–N–C sites boosts the formic acid dehydrogenation of palladium nanoparticles

      Zhong S., Yang X., Chen L., Tsumori N., Taguchi N. & Xu Q.* ACS Applied Materials & Interfaces, 2021, 13(39), 46749.

[35] Encapsulating ultrastable metal nanoparticles within reticular Schiff base nanospaces for enhanced catalytic performance

       Yang X.#, Chen L.#, Liu H., Kurihara H., Horike S. & Xu Q.* Cell Reports Physical Science, 2021, 2, 100289.

[34] Metal-organic frameworks as a platform for clean energy applications

       Li X., Yang X., Xue H., Pang H. & Xu Q.* EnergyChem, 2020, 2(2), 100027.

[33] Solid-solution alloy nanoclusters of the immiscible gold-rhodium system achieved by a solid ligand-assisted approach for highly efficient catalysis

       Yang X., Li Z., Kitta M., Tsumori N., Guo W., Zhang Z., Zhang J., Zou R.* & Xu Q.* Nano Research, 2020, 13(1), 105.

[32] Ultrafine bimetallic Pt–Ni nanoparticles achieved by metal–organic framework templated zirconia/porous carbon/reduced graphene oxide: remarkable catalytic activity in dehydrogenation of hydrous hydrazine

      Song F.#, Yang X.# & Xu Q. Small Methods, 2020, 4 (1), 1900707.

[31] Encapsulating metal nanocatalysts within porous organic hosts

      Yang X. & Xu Q.* Trends in Chemistry, 2020, 2(3), 214.

[30] Ultrafine bimetallic Pt–Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: a highly efficient catalyst for dehydrogenation of hydrous hydrazine

       Kumar A., Yang X. & Xu Q.* Journal of Materials Chemistry A, 2019, 7 (1), 112.

[29] Development of effective catalysts for hydrogen storage technology using formic acid

      Onishi N.#, Iguchi M.#, Yang X.#, Kanega R., Kawanami H.*, Xu Q.* & Himeda Y.* Advanced Energy Materials, 2019, 9 (23), 1801275.

[28] Ru nanoparticles confined within a coordination cage

       Yang X. & Xu Q.* Chem, 2018, 4(3), 403.

[27] Encapsulating highly catalytically active metal nanoclusters inside porous organic cages

       Yang X., Sun J., Kitta M., Pang H. & Xu Q.* Nature Catalysis, 2018, 1 (3), 214.

[26] Metal–organic framework templated porous carbon‐metal oxide/reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid

       Song F., Zhu Q., Yang X., Zhan W., Pachfule P, Tsumori N. & Xu Q.* Advanced Energy Materials, 2018, 8 (1), 1701416.

[25] Tandem nitrogen functionalization of porous carbon: toward immobilizing highly active palladium nanoclusters for dehydrogenation of formic acid

       Li Z., Yang X., Tsumori N., Liu Z., Himeda Y., Autrey T. &  Xu Q. ACS Catalysis, 2017, 7 (4), 2720.

[24] Bimetallic metal–organic frameworks for gas storage and separation

       Yang X. & Xu Q.* Crystal Growth & Design, 2017, 17 (4), 1450.

[23] Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane

       Chen Y., Yang X., Kitta M. & Xu Q.* Nano Research, 2017, 10 (11), 3811.

[22] From Ru nanoparticle-encapsulated metal–organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon

       Pachfule P., Yang X., Zhu Q., Tsumori N., Uchida T. & Xu Q.* Journal of Materials Chemistry A, 2017, 5 (10), 4835.

[21] Gold-containing metal nanoparticles for catalytic hydrogen generation from liquid chemical hydrides

       Yang X. & Xu Q. Chinese Journal of Catalysis, 2016, 37 (10), 1594.

[20] Monodispersed CuCo nanoparticles supported on diamine‐functionalized graphene as a non‐noble metal catalyst for hydrolytic dehydrogenation of ammonia borane

       Song F., Zhu Q., Yang X. & Xu Q.* ChemNanoMat, 2016, 2 (10), 942.

[19] Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst

       Yang X., Pachfule P., Chen Y., Tsumori N. & Xu Q.* Chemical Communications, 2016, 52, 4171.

[18] Access to highly active Ni–Pd bimetallic nanoparticle catalysts for C–C coupling reactions

    Rai R. K., Gupta K., Tyagi D., Mahata A., Behrens S., Yang X., Xu Q., Pathak B. & Singh S. K.* Catalysis Science & Technology, 2016, 6 (14), 5567.

[17] Room-temperature synthesis of bimetallic Co–Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes

       Kaur G., Rai R. K., Tyagi D., Yao X., Li P., Yang X., Zhao Y., Xu Q. & Singh S. K.* Journal of Materials Chemistry A, 2016, 4 (39), 14932.

[16] Improvement of catalytic activity and mechanistic analysis of transition metal ion doped nano CeO2 by aqueous Rhodamine B degradation

       Zou L., Shen X.*, Wang Q., Wang Z., Yang X. & Jing M. Journal of Materials Research, 2015, 30(18), 2763.

[15] Preparation, magnetic and electrochemical properties of xCuFe2O4/CuO composite microfibers

       Zou L., Shen X.*, Wang Q., Wang Z., Yang X. & Jing M. Journal of Sol-Gel Science and Technology, 2015, 75 (1), 54.

[14] Hexaferrite/α-iron composite nanowires: microstructure, exchange-coupling interaction and microwave absorption

       Shen X.*, Song F., Yang X., Wang Z., Jing M., Wang Y. Journal of Alloys and Compounds, 2015, 621, 146.

[13] Magnetic nanocomposite Ba-ferrite/α-iron hollow microfiber: A multifunctional 1D space platform for dyes removal and microwave absorption

       Yang X., Wang Z., Jing M., Liu R., Song F. & Shen X.* Ceramics International, 2014, 40, 15585.

[12] Microwave absorption properties of a double-layer absorber based on nanocomposite BaFe12O19/alpha-Fe and nanocrystalline α-Fe microfibers

     Shen X.*,  Liu H., Wang Z.,  Qian X., Jing M. & Yang X.  Chinese Physics B, 2014, 23 (7), 078101.

[11] Removal of heavy metals and dyes by supported nano zero-valent iron on barium ferrite microfibers

Yang X., Shen X.*, Jing M., Liu R., Lu Y. & Xiang J. Journal of Nanoscience and Nanotechnology, 2014, 14(7), 5251.

[10] Three-layer structure microwave absorbers based on nanocrystalline α-Fe, Fe0.2(Co0.2Ni0.8)0.8 and Ni0.5Zn0.5Fe2O4 porous microfibers

      Liu H., Meng X., Yang X., Jing M., Shen X.* & Dong X.  Journal of nanoscience and nanotechnology, 2014, 14 (4), 2878.

[9] Microwave absorption of sandwich structure based on nanocrystalline SrFe12O19, Ni0.5Zn0.5Fe2O4 and α-Fe hollow microfibers

Yang X., Jing M., Shen X.*, Meng X., Dong M., Huang D. & Wang Y. Journal of Nanoscience and Nanotechnology, 2014, 14(3), 2419. 

[8] Efficient removal of dyes from aqueous solution by mesoporous nanocomposite Al2O3/Ni0.5Zn0.5Fe2O4 microfibers

Yang X., Wang Z., Jing M., Liu R., Jin L. & Shen X.* Water Air, & Soil Pollution, 2014, 225, 1819.

[7] Adsorption characteristics of methyl blue onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles prepared by the rapid combustion process

      Liu R., Shen X.*, Yang X., Wang Q. & Yang F.  Journal of nanoparticle research, 2013, 15 (6), 1.

[6] Enhancement microwave absorption of nanocomposite BaFe12O19/α-Fe microfibers

      Yang X.,  Liu R., Shen X.*, Song F. & Jing M. Chinese Physical B, 2013, 22(5), 058101. 

[5] Bandwidth enhancement in microwave absorption of binary nanocomposite ferrites hollow microfibers

    Song F., Shen X.*, Yang X., Meng X., Xiang J., Liu R. & Dong M. Journal of Nanoscience and Nanotechnology, 2013, 13(4), 3115.

[4] Adsorption kinetics and isotherms of arsenic (V) from aqueous solution onto Ni0.5Zn0.5Fe2O4 nanoparticles

     Liu R., Lu Y., Shen X.*, Yang X., Cui Y. & Cao Y. Journal of Nanoscience and Nanotechnology, 2013, 13(4), 2835.   

[3] Magnetic properties and BSA adsorption of nano-Fe-embedded BaFe12O19 porous microfibers via organic gel-thermal selective reduction process

     Yang, X., Liu, R., Shen, X.* & Song, F. Journal Sol-Gel ScienceTechnology, 2012, 63(1), 8. 

[2] Preparation and magnetic properties of α-Fe/BaFe12O19 composite powders via organic gel-thermal reduction process

   Yang X., Shen X.*, Song F., Liu R. & Cui X. Journal of The Chinese Ceramic Society, 2012, 40(6), 821.

[1] Morphological and magnetic characteristics of strontium ferrite micro- and nanofibers

     Lu Y., Yang X., Zhu J., Song F. & Shen X.* Advanced Materials Research, 2012, 399, 736.