至今,发表催化相关领域论文120余篇,总引用10000余次。2020年至今,以通讯作者发表 Nat. Energy/Nat. Catal.(2)/Nat. Chem. /Nat. Commun.(2)/Sci. Adv.等N/S子刊7篇、JACS(5)/Angew/JACS Au/Adv. Mater. /Chem. Sci.(2)/Adv. Sci. 等专业综合杂志11篇、ACS Catal.(10)/J. Catal.(3)/Appl. Catal. B: Envion./Chi. J. Catal.等催化专业杂志15篇、JCP/JPCL/JPCC等物化杂志11篇,Nano Energy(3)/J. Energy Chem.(2)等能源化学杂志5篇。(以上论文统计不包括在投或修改阶段论文)
加入南科大之后的论文发表情况
修改阶段的论文
123. Mechanistic Insight into the Superior Catalytic Activity of Au/Co3O4 Interface in Glucose Sensors
Yun Xie, Guang-Jie Xia*, Wei-Ping Gong, Fang-Long Zhu, Zhen-Ting Zhao, Yang-Gang Wang*
ACS Catal., in revision.
2024年
122. Potential Dependence and Substituent Effect in CO2 Electroreduction on a Cobalt Phthalocyanine Catalyst
Yin-Long Li, Hao Cao, Hongyan Zhao, Jun Li, Yang-Gang Wang*
ACS Catal., 2024, 14(12), 9575-9585. https://doi.org/10.1021/acscatal.3c05089
121. Coverage-Induced Cation Dehydration and Migration for Enhanced CO–CO Coupling on Cu Electrocatalysts
Hui-Min Yan, Zisheng Zhang, Yang-Gang Wang*
ACS Catal., 2024, 14(5), 3596–3605. https://doi.org/10.1021/acscatal.3c05812
120. Constant Potential Thermodynamic Integration for Obtaining the Free Energy Profile of Electrochemical Reaction
Hao Cao, Xinmao Lv, Shengjie Qian, Jun Li, Yang-Gang Wang*
J. Phys. Chem. Lett., 2024, 15(5), 1314–1320. https://doi.org/10.1021/acs.jpclett.3c03318
119. Modeling Interfacial Dynamics on Single Atom Electrocatalysts: Explicit Solvation and Potential Dependence
Zisheng Zhang, Jun Li, Yang-Gang Wang*
Acc. Chem. Res. 2024, 57(2), 198–207. https://doi.org/10.1021/acs.accounts.3c00589
118. Solvation Enhanced Long-Range Proton Transfer in Aqueous Phase for Glycolaldehyde Hydrogenation over Ru/C Catalyst
Ying Qiao, Wei Cao, Sheng-Jie Qian, Zhen Yao, Yang-Gang Wang*
J. Chem. Phys., 2024, 160(7), 074705. https://doi.org/10.1063/5.0185491
117. Controlling the Selectivity of Electrocatalytic NO Reduction through pH and Potential Regulation on Single-Atom Catalysts
Sheng-Jie Qian, Hao Cao, Yang-Gang Wang*, Jun Li*
J. Am. Chem. Soc., 2024, 146(18), 12530-12537. https://doi.org/10.1021/jacs.4c00827
116. Constructing Gradient Orbital Coupling to Induce Reactive Metal–Support Interaction in Pt-Carbide Electrocatalysts for Efficient Methanol Oxidation
Shenzhou Li, Gang Wang, Houfu Lv, Zijie Lin, Jiashun Liang, Xuan Liu, Yang-Gang Wang*, Yunhui Huang, Guoxiong Wang*, and Qing Li*
J. Am. Chem. Soc., 2024. https://doi.org/10.1021/jacs.4c00618
115. Synthesis of Metal-Nitrogen-Carbon Electrocatalysts with Atomically Regulated Nitrogen-doped Polycyclic Aromatic Hydrocarbons
Shaoqing Chen, Hui-Min Yan, Jochi Tseng, Shijie Ge, Xia Li, Lin Xie, Zian Xu, Pengfei Liu, Chongxuan Liu, Jie Zeng, Yang-Gang Wang*, Hsing-Lin Wang*
J. Am. Chem. Soc., 2024, 146(20), 13703-13708. https://doi.org/10.1021/jacs.4c01770
114. Molecular Tuning Boosts Asymmetric C-C Coupling for CO-to-Acetate Conversion
Jie Ding , Fuhua Li , Xinyi Ren , Yuhang Liu , Yifan Li , Zheng Shen , Tian Wang ,Weijue Wang ,Yang-Gang Wang, Yi Cui , Hongbin Yang* , Tianyu Zhang, Bin Liu*
Nat. Commun. 2024, 15, 3641. https://doi.org/10.1038/s41467-024-47913-1
113. How Interfacial Electron-Donating Defects Influence the Structure and Charge of Gold Nanoparticles on TiO2 Support
Guang-Jie Xia, Yu Fu, Wei Cao, Jun Li, Yang-Gang Wang*
Nano Res. in press. https://doi.org/10.1007/s12274-024-6625-2
112. Tailoring active-site spacing of single-atom catalyst for CH4-to-CH3OH conversion: Co1/UiO-66 MOF as an exemplary model
Karim Harrath, Zhen Yao, Ya-Fei Jiang, Yang-Gang Wang*, and Jun Li*
J. Phys. Chem. C, in press. https://doi.org/10.1021/acs.jpcc.4c00742
111. Formation of Supernarrow Borophene Nanoribbons
Haochen Wang, Pengcheng Ding, Guang-Jie Xia, Xiangyun Zhao, Wenlong E, Miao Yu*, Zhibo Ma*, Yang-Gang Wang*, Lai-Sheng Wang, Jun Li, and Xueming Yang*
Angew. Chem. Int. Ed., 2024, e202406535. https://doi.org/10.1002/anie.202406535
110. Metal–N4 model single-atom catalyst with electroneutral quadri-pyridine macrocyclic ligand for CO2 electroreduction
Jian-Zhao Peng, Yin-Long Li, Yao-Ti Cheng, Fu-Zhi Li, Bo Cao, Qing Wang, Xian Yue, Guo-Tao Lai, Yang-Gang Wang*, Jun Gu.*
Carbon Energy, 2024, https://onlinelibrary.wiley.com/doi/10.1002/cey2.506
109. Conjugated linker-boosted self-assembled monolayer molecule for inverted perovskite solar cells
Geping Qu, Siyuan Cai, Ying Qiao, Deng Wang, Shaokuan Gong, Danish Khan, Yu Wang, Kui Jiang, Qian Chen, Letian Zhang, Yang-Gang Wang, Xihan Chen*, Alex K.-Y Jen*, Zong-Xiang Xu*
Joule, 2024, in press. https://doi.org/10.1016/j.joule.2024.05.005
108. Unraveling the reasons behind SnO2/perovskite defects and their cure through multifunctional Ti3C2TX
Danish Khan,* Imran Muhammad, Geping Qu, Changqin Gao, Jiamin Xu, Zeguo Tang,* Yang-Gang Wang,* Zong-Xiang Xu*
Adv. Funct. Mater, 2024, in press. https://doi.org/10.1002/adfm.202316169
107. First-row transition-metal carbide nanosheets as high-performance cathode materials for lithium-sulfur batteries
Imran Muhammad, Shehzad Ahmed, Zhen Yao, Danish Khan, Tanveer Hussain,Yang-Gang Wang*
Nanoscale, 2024, 16, 262-272. https://doi.org/10.1039/D3NR04761J
2023年
106. Breaking the C–C Bond of Glucose on Tungsten-Based Catalysts in Aqueous Phase
Ying Qiao,#, Guang-Jie Xia,#, Ke-Han Zeng, Wei Cao, Qian-Li Guo, Xiao-Feng Yang, Ai-Qin Wang, Yang-Gang Wang *
J. Catal. 2023, 427, 115114. https://doi.org/10.1016/j.jcat.2023.115114
105. Continuous Constant Potential Model for Describing the Potential-Dependent Energetics of CO2RR on Single Atom Catalysts
Xinmao Lv, Hongyan Zhao, Yang-Gang Wang *
J. Chem. Phys., 2023, 159 (9), 094109. https://doi.org/10.1063/5.0164869
104. Realistic Modeling of the Electrocatalytic Process at Complex Solid-Liquid Interface
Hongyan Zhao, Xinmao Lv, Yang-Gang Wang*
Adv. Sci., 2023, 10 (32), 2303677. https://doi.org/10.1002/advs.202303677
103. Atomic metal–non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells
Qilun Wang#, Huawei Wang#, Hao Cao#, Ching-Wei Tung, Wei Liu, Sung-Fu Hung, Weijue Wang, Chun Zhu, Zihou Zhang, Weizheng Cai, Yaqi Cheng, Hua Bing Tao*, Hao Ming Chen, Yang-Gang Wang*, Yujing Li*, Hong Bin Yang*, Yanqiang Huang, Jun Li & Bin Liu*
Nat. Catal. 2023, 6, 916-926. https://doi.org/10.1038/s41929-023-01017-z
102. Engineering Single-Atom Electrocatalyst for Enhancing Kinetics of Acidic Volmer Reaction
Hao Cao#, Qilun Wang#, Zisheng Zhang, Hui-Min Yan, Hong-Yan Zhao, Hong Bin Yang, Bin Liu,* Jun Li, Yang-Gang Wang*
JACS, 2023, 145(24), 13038–13047. https://doi.org/10.1021/jacs.2c13418
101. Aldehyde Hydrogenation by Pt/TiO2 Catalyst in Aqueous Phase: Synergistic Effect of Oxygen Vacancy and Solvent Water
Wei Cao, Guang-Jie Xia*, Zhen Yao, Ke-Han Zeng, Yin Qiao, Yang-Gang Wang*
JACS Au , 2023, 3 (1), 143–153. https://doi.org/10.1021/jacsau.2c00560
100. Mechanistic Exploration of Furfural Hydrogenation on Copper Surface in Aqueous Phase by DFT and AIMD simulations
Zhen Yao, Guang-Jie Xia, Wei Cao, Ke-Han Zeng, Yang-Gang Wang*
J. Catal. 2023, 418, 1-12. https://doi.org/10.1016/j.jcat.2022.12.024
99. Screened Fe3 and Ru3 single-cluster catalysts anchored on MoS2 support for selective hydrogenation of CO2
Gang Wang, Xuelian Jiang, Yafei Jiang, Yang-Gang Wang*, Jun Li*
ACS Catal., 2023, 13(13), 8413–8422. https://doi.org/10.1021/acscatal.3c00617
98. Activity Origin of the Nickel Cluster on TiC Support for Nonoxidative Methane Conversion
Karim Harrath#, Zhen Yao#, Ya-Fei Jiang, Yang-Gang Wang *, and Jun Li*
J. Phys. Chem. Lett. 2023,14(17) , 4033–4041. https://doi.org/10.1021/acs.jpclett.3c00375
97. Fully Exposed Iridium Clusters Enable Efficient Hydrogenation of N-Heteroarenes
Weiming Chen#, Zhen Yao#, Wenxing Chen, Qikai Shen, Desheng Yuan, Chi Zhang, Yifeng Zhu, Hai-Wei Liang, Yang-Gang Wang*, Weiuo Song*, and Changyan Cao*
ACS Catal. 2023, 13(18), 12153–12162. https://doi.org/10.1021/acscatal.3c03148
96. Catalytic Activity Coupled with Structural Stability within a Heterodimeric Au29(SR)19 Cluster
Tongxin Song#, Zhen Yao#, Guangjun Li, Xiao Cai, Xu Liu, Yang-Gang Wang*, Weiping Ding, Yan Zhu*
ACS. Catal. 2023, 13(16), 10878–10886. https://doi.org/10.1021/acscatal.3c02990
95. Anisotropic Growth of One-Dimensional Carbides in Single-Walled Carbon Nanotubes with Strong Interaction for Catalysis
Kun Wang, Guang-Jie Xia, Tianhui Liu, Yulong Yun, Wu Wang, Kecheng Cao, Fenfa Yao, Xin Zhao, Boyuan Yu, Yang-Gang Wang*, Chuanhong Jin, Jiaqing He, Yan Li, Feng Yang*
JACS, 2023, 145(23), 12760–12770. https://doi.org/10.1021/jacs.3c03128
94. Enhancing perovskite solar cell performance through dynamic hydrogen-mediated polarization of nitrogen and sulfur in phthalocyanine
Geping Qu, Ying Qiao, Jie Zeng, Siyuan Cai, Qian Chen, Deng Wang, Danish Khan, Limin Huang, Baomin Xu, Jiangzhao Chen, Tarek El-Assaad, Yang-Gang Wang*, Dominic V. McGrath*, Zongxiang Xu*
Nano Energy, 2023,118, 108974. https://doi.org/10.1016/j.nanoen.2023.108974
93. Three-Dimensional Silicene-based Materials: A Universal Anode for Monovalent and Divalent-Ion Batteries
Imran Muhammad, Shehzad Ahmedb, Hao Cao, Asif Mahmood, and Yang-Gang Wang*
JPCC, 2023, 127(2), 1198–1208. https://doi.org/10.1021/acs.jpcc.2c06877
92. Phosphorus Coordinated Co/Se2 Heterointerface Nanowires: In-Situ Catalyst Reconstruction toward Efficient Overall Water Splitting in Alkaline and Seawater Media
Felix Ofori Boakye, Ph.D; Karim Harrath; Mohammad Tabish; Ghulam Yasin; Kwadwo Asare Owusu; Saira Ajmal; Wenbin Zhang; Haining Zhang; Yang-Gang Wang*, Wei Zhao*
J. Alloy. Compd., 2023, 969, 172240. https://doi.org/10.1016/j.jallcom.2023.172240
91. 3D porous sulfur-graphdiyne with splendid electrocatalytic and energy storage application
Imran Muhammad, Shehzad Ahmed, Hao Cao, Zhen Yao Danish Khan, Asif Mahmood, Xiao-Gen Xiong, Rajeev Ahuja*, Yang-Gang Wang*
Mater. Today Chem. 2023, 34, 101756. https://doi.org/10.1016/j.mtchem.2023.101756
90. Spontaneous decoration of ionic compounds at perovskite interfaces to achieve 23.38% efficiency with 85% fill factor in NiOX-based perovskite solar cells
Geping Qu, Deng Wang, Xiaoyuan Liu, Ying Qiao, Danish Khan*, Yinxin Li, Jie Zeng, Pengfei Xie, Yintai Xu, Peide Zhu, Limin Huang, Yang-Gang Wang*, Baomin Xu*, Zong-Xiang Xu*
J. Energy. Chem. 2023, 85, 39-48. https://doi.org/10.1016/j.jechem.2023.05.035
89. Binary Microcrystal Additives Enabled Antisolvent-Free Perovskite Solar Cells with High Efficiency and Stability
Deng Wang, Jiabang Chen, Peide Zhu, Ying Qiao, Hang Hu, Jie Zeng, Jiyao Zhang, Geping Qu, Yang-Gang Wang, Xingzhu Wang,
Alex K.-Y. Jen, Baomin Xu*
Adv. Energy Mater. 2023, 13, 2203649. https://doi.org/10.1002/aenm.202203649
2022年
88. Critical Role of Explicit Inclusion of Solvent and Electrode Potential in the Electrochemical Description of Nitrogen Reduction
Sheng-Jie Qian, Hao Cao, Jie-Wei Chen, Jun-Chi Chen, Yang-Gang Wang*, Jun Li *
ACS Catal. 2022, 12(18), 11530-11540. https://doi.org/10.1021/acscatal.2c03186
87. Modeling the Potential-Dependent Kinetics of CO2 Electroreduction on Single-Nickel Atom Catalysts with Explicit Solvation
Hong-Yan Zhao, Hao Cao, Zisheng Zhang, and Yang-Gang Wang*
ACS Catal. 2022,12 (18), 11380–11390. https://doi.org/10.1021/acscatal.2c02383
86. Potential-Dependent Free Energy Relationship in Interpreting the Electrochemical Performance of CO2 Reduction on Single Atom Catalysts
Hao Cao#, Zisheng Zhang#, Jie-Wei Chen, and Yang-Gang Wang*
ACS Catal. 2022, 12(11), 6606–6617. https://doi.org/10.1021/acscatal.2c01470
85. Diffusion and Surface Segregation of Interstitial Ti Defects Induced by Electronic Metal–Support Interactions on a Au/TiO2 Nanocatalyst
Guang-Jie Xia, Mal-Soon Lee, Vassiliki-Alexandra Glezakou, Roger Rousseau, and Yang-Gang Wang*
ACS Catal. 2022, 12(8), 4455–4464. https://doi.org/10.1021/acscatal.2c00159
84. Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst
Jie-Wei Chen#, Zisheng Zhang#, Hui-Min Yan#, Guang-Jie Xia, Hao Cao and Yang-Gang Wang*
Nat. Commun. 2022, 13, 1734. https://doi.org/10.1038/s41467-022-29357-7
83. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles
Chunyang Dong#, Zirui Gao#, Yinlong Li#, Mi Peng#, Meng Wang, Yao Xu, Chengyu Li, Ming Xu, Yuchen Deng, Xuetao Qin, Fei Huang, Xuyan Wei,
Yang-Gang Wang*, Hongyang Liu*, Wu Zhou* and Ding Ma*
Nat. Catal. 2022, 5, 485-493. https://doi.org/10.1038/s41929-022-00769-4
82. Crystalline Lattice-Confined Atomic Pt in Metal Carbides to Match Electronic Structures and Hydrogen Evolution Behaviors of Platinum
Tian Ma#, Hao Cao#, Shuang Li, Sujiao Cao, Zhenyang Zhao, Zihe Wu, Rui Yan, Chengdong Yang, Yi Wang*, Peter A. van Aken, Li Qiu*,
Yang-Gang Wang* and Chong Cheng*
Adv. Mater. 2022, 34, 2206368. https://doi.org/10.1002/adma.202206368
81. Kinetic diffusion–controlled synthesis of twinned intermetallic nanocrystals for CO-resistant catalysis
Kun Wang#, Lei Wang#, Zhen Yao#, Lei Zhang#, Luyao Zhang, Xusheng Yang, Yingbo Li, Yang-Gang Wang*, Yan Li and Feng Yang*
Sci. Adv. 2022, 8, eabo4599. https://doi.org/10.1126/sciadv.abo4599
80. Synergistic effect of Ru-N4 sites and Cu-N3 sites in carbon nitride for highly selective photocatalytic reduction of CO2 to methane
Lei Zeng, Jie-Wei Chen, Lixiang Zhong, Wenlong Zhen, Yee Yan Tay, Shuzhou Li, Yang-Gang Wang*, Limin Huang* and Can Xue*
Appl. Catal. B: Environ. 2022, 307, 121154. https://doi.org/10.1016/j.apcatb.2022.121154
79. Fast Transformation of CO2 into CO Via a Hydrogen Bond Network on the Cu Electrocatalysts
Hui-Min Yan, Zi-Xuan Wang, Ya-Min Wang, Guang-Jie Xia, and Yang-Gang Wang*
J. Phys. Chem. C 2022, 126(18), 7841–7848. https://doi.org/10.1021/acs.jpcc.2c01857
78. Special Issue of Single-atom Catalysis
Yuen Wu*, Chenliang Su*, Yang-Gang Wang*
Chem. Res. Chinese Universities 2022, doi: 10.1007/s40242-022-5000-7
77. Single Iron Dimer Catalysts on MoS2 Nanosheet for Potential Nitrogen Activation
Sheng-Jie Qian, Yang-Gang Wang* and Jun Li.
Chem. Res. Chinese Universities 2022, 38, 1226–1231. https://doi.org/10.1007/s40242-022-2273-9
76. Dynamic Simulation on Surface Hydration and Dehydration of Monoclinic Zirconia
Guang-Jie Xia and Yang-Gang Wang*
Chi. J. Chem. Phys. 2022, 35(4), 629. https://doi.org/10.1063/1674-0068/cjcp2204062
75. Mechanistic insight into methanol electro-oxidation catalyzed by PtCu alloy
Wei Zhang, Guang-Jie Xia* and Yang-Gang Wang*
Chi. J. Catal. 2022, 43(1), 167-176. https://doi.org/10.1016/S1872-2067(21)63886-X
74. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction
Jian-Chao Jiang#, Jun-Chi Chen#, Meng-die Zhao, Qi Yu*, Yang-Gang Wang* and Jun Li
Nano Res. 2022, 15, 7116–7123. https://doi.org/10.1007/s12274-022-4476-2
73. Dopant-Free Phthalocyanine Hole Conductor with Thermal-Induced Holistic Passivation for Stable Perovskite Solar Cells with 23% Efficiency
Geping Qu#, Lei Dong#, Ying Qiao#, Danish Khan, Qian Chen, Pengfei Xie, Xuemeng Yu, Xiaoyuan Liu, Yang-Gang Wang, Jiangzhao Chen*, Xihan Chen*and Zong-Xiang Xu*
Adv. Funct. Mater. 2022, 2206585. https://doi.org/10.1002/adfm.202206585
72. Tuning phase compositions of MoS2 nanomaterials for enhanced heavy metal removal: performance and mechanism
Qi Han#, Hao Cao#, Yuchen Sun, Gang Wang, Sidney Poon, Monong Wang, Bei Liu, Yang-Gang Wang, Zhongying Wang and Baoxia Mi
Phys. Chem. Chem. Phys. 2022, 24, 13305-13316. https://doi.org/10.1039/d2cp00705c
71. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation
Chun Zhu, Jin-Xia Liang*, Yang-Gang Wang and Jun Li*
Chi. J. Catal. 2022, 43(7), 1830-1841. https://doi.org/10.1016/S1872-2067(21)64027-5
70. Single-element amorphous palladium nanoparticles formed via phase separation
Dong Sheng He#, Yi Huang#, Benjamin D. Myers, Dieter Isheim, Xinyu Fan, Guang-Jie Xia, Yunsheng Deng, Lin Xie, Shaobo Han, Yang Qiu,
Yang-Gang Wang, Junhua Luan, Zengbao Jiao, Li Huang, Vinayak P. Dravid and Jiaqing He*
Nano Res. 2022, 15, 5575–5580. https://doi.org/10.1007/s12274-022-4173-1
69. Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides
Aliaksei Mazheika*, Yang-Gang Wang, Rosendo Valero, Francesc Viñes, Francesc Illas, Luca M. Ghiringhelli, Sergey V. Levchenko* and Matthias Scheffler
Nat. Commun. 2022, 13, 419. https://doi.org/10.1038/s41467-022-28042-z
68. Surface Brønsted-Lewis dual acid sites for high-efficiency dinitrogen photofixation in pure water
Cai Chen# Jiewei Chen#, ZhiyuanWang, Fei Huang, Jian Yang, Yunteng Qu, Kuang Liang, Xiao Ge, Yang-Gang Wang, Hui Zhang* and YuenWu*
J. Energy Chem. 2022, 67, 824–830. https://doi.org/10.1016/j.jechem.2021.10.039
67. Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling
Guo-Lei Xiang* and Yang-Gang Wang
Nano Res. 2022, 15, 3812–3817. https://doi.org/10.1007/s12274-021-3910-1
2021年
66. Lattice oxygen self-spillover on reducible oxide supported metal cluster: the water–gas shift reaction on Cu/CeO2 catalyst
Ya-Qiong Su#, Guang-Jie Xia#, Yanyang Qin, Shujiang Ding and Yang-Gang Wang*
Chem. Sci. 2021, 12, 8260-8267. https://doi.org/10.1039/d1sc01201k
65. Tandem catalyzing the hydrodeoxygenation of 5-hydroxymethylfurfural over a Ni3Fe intermetallic supported Pt single-atom site catalyst
Ge Meng#, Kaiyue Ji#, Wei Zhang#, Yiran Kang, Yu Wang, Ping Zhang, Yang-Gang Wang*, Jun Li, Tingting Cui, Xiaohui Sun, Tianwei Tan,
Dingsheng Wang* and Yadong Li
Chem. Sci. 2021, 12, 4139-4146. https://doi.org/10.1039/d0sc05983h
64. Solvent promotion on the metal-support interaction and activity of Pd@ZrO2 Catalyst: Formation of metal hydrides as the new catalytic active phase at the Solid-Liquid interface
Guang-Jie Xia and Yang-Gang Wang*
J. Catal. 2021, 404, 537-550. https://doi.org/10.1016/j.jcat.2021.10.030
63. Unraveling the catalytically active phase of carbon dioxide hydrogenation to methanol on Zn/Cu alloy: Single atom versus small cluster
Xiao-KuanWu, Hui-MinYan, WeiZhang, JieZhang, Guang-JieXia* and Yang-GangWang*
J. Energy Chem. 2021, 61, 582-593. https://doi.org/10.1016/j.jechem.2021.02.016
62. Heterogeneous Two-Atom Single-Cluster Catalysts for the Nitrogen Electroreduction Reaction
Jun-Chi Chen, Hao Cao, Jie-Wei Chen, Sheng-Jie Qian, Guang-Jie Xia, Yang-Gang Wang*, and Jun Li*
J. Phys. Chem. C 2021, 125(36), 19821–1983061. https://doi.org/10.1021/acs.jpcc.1c06339
61. Molecular Design of Dispersed Nickel Phthalocyanine@Nanocarbon Hybrid Catalyst for Active and Stable Electroreduction of CO2
Zisheng Zhang and Yang-Gang Wang*
J. Phys. Chem. C 2021, 125(25), 13836–13849. https://doi.org/10.1021/acs.jpcc.1c02508
60. Surface-structure tailoring of ultrafine PtCu nanowires for enhanced electrooxidation of alcohols
Liping Huang#, Wei Zhang#, Yanfei Zhong#, Peng Li*, Dong Xiang, Waqar Uddin, Xiaowu Li, Yang-Gang Wang*, Xiaoyou Yuan, Dingsheng Wang and Manzhou Zhu*
Sci. China Mater. 2021, 64, 601–610. https://doi.org/10.1007/s40843-020-1469-2
59. Carbon corrosion mechanism on nitrogen-doped carbon support — A density functional theory study
Yunqi Li*, Jing Li, Yang-Gang Wang, Xiran Chen, Mingtao Liu, Zhong Zheng, Xihong Peng*
Int. J. Hydrog. Enenrgy 2021, 46(24), 13273-13282. https://doi.org/10.1016/j.ijhydene.2021.01.148
58. Phosphorene Supported Single-Atom Catalysts for CO Oxidation: A Computational Study
Sambath Baskaran, Cong-Qiao Xu*, Ya-Fei Jiang, Yang-Gang Wang and Jun Li
ChemPhysChem 2021, 22, 378-385. https://doi.org/10.1002/cphc.202000950
57. Theory-Driven Design of Electrocatalysts for the Two-Electron Oxygen Reduction Reaction Based on Dispersed Metal Phthalocyanines
Yang Wang#, Zisheng Zhang#, Xiao Zhang*, Yubo Yuan, Zhan Jiang, Hongzhi Zheng, Yang-Gang Wang, Hua Zhou and Yongye Liang*
CCS Chem. 2021, 4(1), 228-236. https://doi.org/10.31635/ccschem.021.202000590
56. Using general computational chemistry strategy to unravel the reactivity of emerging pollutants: An example of sulfonamide chlorination
Wenjie Fu#, Guang-Jie Xia#, Yixiang Zhang, Jiahui Hua, Yang-Gang Wang, Jun Li, Xiaoyan Li, and Bing Li
Water Res. 2021, 202, 117391. https://doi.org/10.1016/j.watres.2021.117391
2020年
55. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction
Xiao Zhang#, Yang Wang#, Meng Gu#, Maoyu Wang#, Zisheng Zhang, Weiying Pan, Zhan Jiang, Hongzhi Zheng, Marcos Lucero, Hailiang Wang, George E. Sterbinsky, Qing Ma, Yang-Gang Wang*, Zhenxing Feng*, Jun Li, Hongjie Dai and Yongye Liang*
Nat. Energy 2020, 5, 684–692.https://doi.org/10.1038/s41560-020-0667-9
54. Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures
Xueqin Wei#, Junjun Liu#, Guang-Jie Xia#, Junhong Deng, Peng Sun, Jason J. Chruma, Wanhua Wu, Cheng Yang*, Yang-Gang Wang* and Zhifeng Huang*
Nat. Chem. 2020, 12, 551-559. https://doi.org/10.1038/s41557-020-0453-0
53. Gas-assisted transformation of gold from fcc to the metastable 4H phase
Shaobo Han#, Guang-Jie Xia#, Chao Cai#, Qi Wang, Yang-Gang Wang*, Meng Gu* and Jun Li
Nat. Commun. 2020, 11, 552. https://doi.org/10.1038/s41467-019-14212-z
52. Atomic origin of CO-Interaction effect of PtPb@Pt catalyst revealed by in situ environmental transmission electron microscopy
Qi Wang#, Guang-JieXia#, Zhi Liang Zhao, Yuanmin Zhua, Xiaobo Shi, Limin Huang, Yang-Gang Wang* and Meng Gu*
Nano Energy, 2020, 76, 105099. https://doi.org/10.1016/j.nanoen.2020.105099
51. In-situ polymerization induced atomically dispersed manganese sites as cocatalyst for CO2 photoreduction into synthesis gas
Jia Yang#, Zhiyuan Wang#, Jianchao Jiang, Wenxing Chen, Fan Liao, Xiao Ge, Xiao Zhou, Min Chen, Ruilong Li, Zhenggang Xue, Gang Wang, Xuezhi Duan, Guoqing Zhang, Yang-Gang Wang* and YuenWu*
Nano Energy 2020, 76, 105059. https://doi.org/10.1016/j.nanoen.2020.105059
50. N-Coordinated Dual-Metal Single-Site Catalyst for Low-Temperature CO Oxidation
Jing Wang#, Rui You#, Chao Zhao#, Wei Zhang, Wei Liu, Xin-Pu Fu, Yangyang Li, Fangyao Zhou, Xusheng Zheng, Qian Xu, Tao Yao, Chun-Jiang Jia, Yang-Gang Wang*, Weixin Huang*, and Yuen Wu*
ACS Catal., 2020, 710(4), 2754–2761. https://doi.org/10.1021/acscatal.0c00097
49. Carbon Monoxide Gas Induced 4H-to-fcc Phase Transformation of Gold As Revealed by In-Situ Transmission Electron Microscopy
Shaobo Han, Chao Cai, Guang-jie Xia, Congli Sun, Xiaobo Shi, Weidong Zhou, Jun Li, Yang-Gang Wang*, and Meng Gu*
Inorg. Chem. 2020, 59(19), 14415–14423. https://doi.org/10.1021/acs.inorgchem.0c02209
48. Mechanistic Insight into the Oxygen Reduction Reaction on the Mn–N4/C Single-Atom Catalyst: The Role of the Solvent Environment
Hao Cao, Guang-Jie Xia, Jie-Wei Chen, Hui-Min Yan, Zhen Huang, and Yang-Gang Wang*
J. Phys. Chem. C 2020, 124(13), 7287–7294. https://doi.org/10.1021/acs.jpcc.0c00352
47. Mechanistic insight into the catalytically active phase of CO2 hydrogenation on Cu/ZnO catalyst
Xiao-KuanWu#, Guang-Jie Xia#, Zhen Huang, Deepak Kumar Rai, Hong Zhao, Jie Zhang*, Jimmy Yun and Yang-GangWang*
Appl. Surf. Sci. 2020, 525, 146481. https://doi.org/10.1016/j.apsusc.2020.146481
46. Supported Metal Clusters: Fabrication and Application in Heterogeneous Catalysis
Chunyang Dong, Yinlong Li, Danyang Cheng, Mengtao Zhang, Jinjia Liu, Yang-Gang Wang, Dequan Xiao, and Ding Ma*
ACS Catal. 2020, 10(19), 11011–11045. https://doi.org/10.1021/acscatal.0c02818
45. Engineering of Coordination Environment and Multiscale Structure in Single-Site Copper Catalyst for Superior Electrocatalytic Oxygen Reduction
Tingting Sun#, Yinlong Li#, Tingting Cui#, Lianbin Xu, Yang-Gang Wang, Wenxing Chen, Pianpian Zhang, Tianyu Zheng, Xianzhang Fu, Shaolong Zhang, Zedong Zhang, Dingsheng Wang*, and Yadong Li
Nano Lett. 2020, 20(8), 6206–6214. https://doi.org/10.1021/acs.nanolett.0c02677
44. Unravelling the Enigma of Nonoxidative Conversion of Methane on Iron Single-Atom Catalysts
Yuan Liu, Jin-Cheng Liu, Teng-Hao Li, Zeng-Hui Duan, Tian-Yu Zhang, Ming Yan, Wan-Lu Li, Hai Xiao, Yang-Gang Wang, Chun-Ran Chang* and Jun Li*
Angew. Chem. Int. Ed. 2020, 132, 18745-18749. https://doi.org/10.1002/ange.202003908
43. Catalytic mechanism and bonding analyses of Au-Pd single atom alloy (SAA): CO oxidation reaction
Sambath Baskaran, Cong-Qiao Xu*, Yang-Gang Wang, Ignacio L. Garzón and Jun Li*
Sci. China Mater. 2020, 63, 993-1002. https://doi.org/10.1007/s40843-019-1257-x
42. Catalytic performance and reaction mechanism of NO oxidation over Co3O4 catalysts
Lei Ma, Wei Zhang, Yang-GangWang, Xiaoyin Chen, Weiting Yu, Kai Sun, Haiping Sun, Junhua Li, and Johannes W. Schwank
Appl. Catal. B: Environ. 2020, 267, 118371. https://doi.org/10.1016/j.apcatb.2019.118371
2019年
41. Direct transformation of lignin into fluorescence-switchable graphene quantum dots and their application in ultrasensitive profiling of a physiological oxidant
Ruibin Wang#, Guangjie Xia#, Wentao Zhong, Lei Chen, Liheng Chen, Yang-Gang Wang*, Yonggang Min* and Kaixin Li *
Green Chem. 2019, 21, 3343-3352. https://doi.org/10.1039/C9GC01012B
40. Exposing Cu-Rich {110} Active Facets in PtCu nanostars for boosting electrochemical performance toward multiple liquid fuels electrooxidation
Liping Huang#, Wei Zhang#, Peng Li*, Yongbo Song, Hongting Sheng, Yuanxin Du, Yang-Gang Wang*, Yuen Wu, Xun Hong, Yanhuai Ding, Xiaoyou Yuan and Manzhou Zhu*
Nano Res. 2019, 12, 1147–1153. https://doi.org/10.1007/s12274-019-2367-y
39. Heterogeneous Single-Cluster Catalysts for Selective Semihydrogenation of Acetylene with Graphdiyne-Supported Triatomic Clusters
Deng-Hui Xing, Cong-Qiao Xu, Yang-Gang Wang*, and Jun Li*
J. Phys. Chem. C 2019, 123(16), 10494–10500. https://doi.org/10.1021/acs.jpcc.9b02029
38. Theoretical understanding of the stability of single-atom catalysts
Jin-Cheng Liu, Yan Tang, Yang-Gang Wang, Tao Zhang, Jun Li*
Nat. Sci. Rev. 2018, 5(5), 638-641. https://doi.org/10.1093/nsr/nwy094
加入南科大之前发表的论文:
[37] Liu J.-C.; Ma, X.-L.; Li, Y.; Wang, Y.-G.; Xiao, H.; Li, J.* Heterogeneous Fe3 Single-cluster Catalyst for Ammonia Synthesis via an Associative Mechanism. Nat. Comm., 2018, 9. 1610.
[36] He Y.; Liu J.-C.; Luo, L.; Wang, Y.-G.; Zhu, J.; Du, Y.; Li, J.*; Mao, S. X.*; Wang, C.* Size-Dependent Dynamic Structures of Supported Gold Nanoparticles in CO Oxidation Reaction Condition. Pro. Nat. Aca. Sci., 2018, 115, 7700.
[35] Cantu D. C.; Padmaperum A. B.; Nguyena M.-T.; Akhade, S. A.; Yoon, Y.; Wang, Y.-G.; Lee, M.-S.; Glezakou, V.-A.; Rousseau, R.*; Lilga, M. A.* Combined Experimental and Theoretical Study on the Activity and Selectivity of the Electrocatalytic Hydrogenation of Aldehydes. ACS Catal., 2018, 8, 7645.
[34] Zhang W.; Wang, Y.-G.; Ding, Y.*; Yin, J.; Zhang P. Two-dimensional GeAsSe with High and Unidirectional Conductivity. Nanoscale, 2018, 10, 15998.
[33] Yin, J.*; Wu B.; Wang, Y.-G.; Li, Z.; Yao, Y.; Jiang, Y.; Ding Y.* Novel Elastic, Lattice Dynamics and Thermodynamic Properties of Metallic Single-layer Transition Metal Phosphides: 2H-M 2P (Mo2P, W2P, Nb2P and Ta2P). J. Phys.: Condens. Matter. , 2018, 30, 135701.
[32] Han, Y.#; Wang, Y.-G.#; Xu, R.; Chen, W.; Zheng, L.; Han, A.; Zhu, Y.; Zhang, J. ; Zhang, H.; Luo, J.; Chen, C; Peng, Q.; Wang, D.-S.*; Li, Y.-D.* Electronic Structure Engineering to Boost Oxygen Reduction Activity by Controlling the Coordination of Central Metal. Energy Environ. Sci., 2018, 11, 2348.
[31] Wang, Z.-T.#; Wang, Y.-G.#; Mu, R.-T.;# Yoon, Y.; Dahal, A. P.; Schenter, G. K.; Lyubinetsky, I. Y.;* Glezakou, V.-A.; Rousseau, R.;*Dohnalek, Z.* Probing Equilibrium of Molecular and Deprotonated Water on TiO2(110). Pro. Nat. Aca. Sci., 2017, 114, 1801.
[30] Xu, C.-Q.; Lee, M.-S.*; Wang, Y.-G.*; Cantu, D.; Li, J.*; Gleakzou, V.-A.; Rousseau, R. Structural Rearrangement of Au–Pd Nanoparticles under Reaction Conditions: An ab Initio Molecular Dynamics Study. ACS. Nano., 2017, 11, 1649.
[29] Zhang, M.-L.#; Wang Y.-G.#; Chen, W.-X.#; Dong, J.-C.; Zheng, L.-R.; Wan, J.; Tian, S.; Cheong, W.-C.; Wang, D.-S.*; Li, Y.-D*. Metal (Hydr)oxides@Polymer Core–Shell Strategy to Metal Single-Atom Materials. J. Am. Chem. Soc., 2017, 139, 10976.
[28] Chen, Y.-J.#; Ji, S.-F.#; Wang, Y.-G.#; Dong, J-C.; Chen, W-.X.; Zhang, L.-R.; Wang, D.-S.*; Zhuang, Z.-B.; Li, Y.-D*. Isolated Single-Atom Iron Anchored on N-Doped Porous Carbon as Efficient Electrocatalyst for Oxygen Reduction Reaction. Angew. Chem. Int. Ed., 2017, 129, 1.
[27] Han, Y.-H.#; Wang, Y.-G.#; Chen, W.-X.#; Xu, R.-R.; Zheng, L.-R.; Zhang, J.; Luo, J.; et al. Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. J. Am. Chem. Soc., 2017, 139, 1726.
[26] Liu, J.-C.; Wang, Y.-G.*; Li, J*. Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria. J. Am. Chem. Soc., 2017,139, 6190.
[25] Han, Z.-K.; Wang, Y.-G.*; Gao, Y*. Catalytic Role of Vacancy Diffusion in Ceria Supported Gold Catalyst. Chem. Comm., 2017, 53, 9125-9128.
[24] He, M.; Zhang, J.*; Sun, X.-L.; Chen, B.-H.; Wang, Y.-G*. Density Functional Theory Studies on the Skeletal Isomerization of 1-Butene Catalyzed by ZSM-23 and ZSM-48 Zeolites. RSC Adv., 2017, 7, 9251.
[23] Tang, Y.; Wang, Y.-G.*; Liang, J.-X.; Li, J*. Investigation of Water Adsorption and Dissociation on Au1/CeO2 Single-Atom Catalysts using Density Functional Theory. Chin. J. Catal., 2017, 38, 1558.
[22] Tang, Y.; Wang, Y.-G.*; Li, J*. Theoretical Investigations of Pt1@CeO2 Single-Atom Catalyst for CO Oxidation. J. Phys. Chem. C, 2017, 121, 11281.
[21] Su, Y.; Han, Z.-K.; Zhang, L.; Wang, W. Z.; Duan, M. Y.; Li, X. M.; Zheng, Y. L.; Wang, Y.-G.; Lei, X. L. Surface Hydrogen Bonds Assisted Meso-porous WO3 Photocatalysts for High Selective Oxidation of Benzylalcohol to Benzylaldehyde. Appl. Catal. B: Environ., 2017, 217, 108.
[20] Dagle V. B.; Dagle, R.*; Kovarik, Li.; Genc, A.; Wang, Y.-G.; Bowden, M.; et al. Steam Reforming of Hydrocarbons from Biomass-Derived Syngas over MgAl2O4-supported Transition Metals and Bimetallic IrNi Catalysts. Appl. Catal. B: Environ., 2016, 184, 142.
[19] Wang, Y.-G.; Cantu, D.; Lee, M.-S.; Li, J.; Glezakou, V.-A.; Rousseau, R*. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways. J. Am. Chem. Soc., 2016, 138, 10467.
[18] Wang, Y.-G.; Yang, X.; Li, J*. Theoretical Studies of CO Oxidation with Lattice Oxygen on Co3O4 Surfaces. Chi. J. Catal., 2016, 37, 193.
[17] He, M.; Zhang, J.*; Sun, X.-L.; Chen, B.-H.; Wang, Y.-G*. Theoretical Study on Methane Oxidation Catalyzed by Fe/ZSM-5: The Significant Role of Water on Binuclear Iron Active Sites. J Phys. Chem. C, 2016, 120, 27422.
[16] Liu J.-C.; Tang, Y.; Chang, C.-R.*; Wang, Y.-G.*; Li, J.* Mechanistic Insights into Propene Epoxidation with O2–H2O Mixture on Au7/α-Al2O3: A Hydroproxyl Pathway from ab Initio Molecular Dynamics Simulations. ACS Catal., 2016, 6, 2525.
[15] Cantu, D.; Wang, Y-G.; Yoon, Y.; Glezakou, V.-A.; Rousseau, R.*; Weber, R. S*. Heterogeneous Catalysis in Complex, Condensed Reaction Media. Catal. Today, 2016, 289, 231.
[14] Wang, Y.-G.; Mei, D.-H.; Li, J.*; Rousseau, R*. Dynamic Formation of Single-Atom Catalytic Active Sites on Ceria-supported Gold Nanoparticles. Nat. Comm., 2015, 6. 6511.
[13] Yoon, Y.; Wang, Y.-G.; Rousseau, R; Glezakou, V.A*. Impact of Nonadiabatic Charge Transfer on the Rate of Redox Chemistry of Carbon Oxides on Rutile TiO2(110) Surface. ACS Catal., 2015, 5, 1764.
[12] Xiao, B.; Niu, Z.; Wang, Y.-G.; Jia, W.; Zhang, L.; Wang, D.; Fu, Y.; Zeng, J.; He, W.; Wu, K.; Li, J.; Yang, J.-L.; Liu, L.; Li, Y.-D*. Copper Nanocrystal Plane Effect on Stereoselectivity of Catalytic Deoxygenation of Aromatic Epoxides. J. Am. Chem. Soc., 2015, 137, 3791.
[11] Qiao, B.; Liu J.; Wang, Y.-G.; Lin, Q.-Q.; Liu, X.-Y.; Wang, A.-Q.; Li, J.*; Zhang, T.*; Liu, J.-Y*. Highly Efficient Catalysis of Preferential Oxidation of CO inH2-rich Stream by Gold Single-atom Catalysts. ACS Catal. 2015, 5, 6249.
[10] Cai, Q.; Wang, J.-G.*; Wang, Y.-G.; Mei, D*. Mechanistic Insights into the Structure Dependent Selectivity of Catalytic Furfural Conversion on Platinum Catalysts. AIChE J. , 2015, 61, 3812.
[9] Wang, Y.-G.; Yang, X.-F.; Hu, L.-H.; Li, Y.-D.; Li, J*. Theoretical Study of the Crystal Plane Effect and Ion-Pair Active Center for C–H Bond Activation by Co3O4 Nanocrystals. Chin. J. Catal., 2014, 35, 462.
[8] Wang, Y.-G.; Yoon, Y.; Glezakou, V.-A.;Li, J .*; Rousseau, R.* The Role of Reducible Oxide/Metal Cluster Charge Transfer: New Insights on The Catalytic Mechanism of CO Oxidation on Au/TiO2 from Ab Initio Molecular Dynamics. J. Am. Chem. Soc., 2013, 135,10673.
[7] Wang, Y.-G.; Mei, D.; Rousseau, R.*; Li, J*. DFT+U Study on the Localized Electronic States and Their Potential Role During H2O Dissociation and CO Oxidation Processes on CeO2(111) Surface. J. Phys. Chem. C, 2013, 117,23082.
[6] Xiang, G.#; Wang, Y. -G.#; Li, J.*; Zhuang, J.; Wang, X. Surface-specific Interaction by Structure-match Confine#d Pure high-energy Facet of Unstable TiO2(B) Polymorph. Sci. Rep., 2013, 3, 1411.
[5] Liu, L.; Zhuang, Z.; Xie, T.; Wang, Y.-G.; Li, J.; Peng, Q.; Li, Y.-D*. Shape Control of CdSe Nanocrystals with Zinc Blende Structure. J. Am. Chem. Soc., 2009, 131, 16423.
[4] Xiang, G.; Wang, Y. -G.; Wu, D.; Li, T.; He, J.; Li, J.; Wang, X*. Size‐Dependent Surface Activity of Rutile and Anatase TiO2Nanocrystals: Facile Surface Modification and Enhanced Photocatalytic Performance. Chem-Eur. J., 2012, 18, 475 9.
[3] Zhang, P.-X.; Wang, Y.-G.; Huang, Y.-Q.; Zhang, T.; Wu, G.-S.; Li, J*. Density Functional Theory Investigations on the Catalytic Mechanisms of Hydrazine Decompositions on Ir (111). Catal. Today, 2011,165, 80.
[2] Chang, C.-R.; Wang, Y.-G.; Li, J*. Theoretical Investigations of the Catalytic Role of Water in Propene Epoxidation on Gold Nanoclusters: A Hydroperoxyl-mediated Pathway. Nano Res., 2011, 4, 131.
[1] Wang, D.; Ma, X.; Wang, Y.-G.; Wang, L.; Wang, Z.; Zheng, W.; et al. Shape Control of CoO and LiCoO2Nanocrystals. Nano Res., 2010, 3, 1.