近期发表文章
2024
54. Zheng H.F.,Li L.Q. ,Chien Y. C.,Yang J.,Li S. F.,Jain S., Xiang H.,Chen M. X.,Chai J. W.,Long Y. F.,Pam M. E.,Wang L.,Chi D.Z.,Ang K.W.* Memristor Array Based on Wafer-Scale 2D HfS2 for Dual-Mode Physically Unclonable Functions. ACS Applied Materials & Interfaces 2024,16,47, 64963-64975.
https://pubs.acs.org/doi/full/10.1021/acsami.4c11340#
53. Liu, X., Dai S.L. , Zhao W. D., Zhang J. Y. ,Guo Z. Y., Wu Y. ,Xu Y. T. , Sun T. R., Li L.,Guo P., Yang J. ,Hu H. W.*,Zhou J. H.*,Zhou P.*,Huang J.* All-photolithography fabrication of ion-gated flexible organic transistor array for multimode neuromorphic computing. Advanced Materials 2024, 36, 21, 2312473.
https://doi.org/10.1002/adma.202312473
2023
52. Li, T.; Xu, Q.; Waqar, M.; Yang, H.; Gong, W.; Yang, J.*; Zhong, J.; Liu, Z., Millisecond-Induced Defect Chemistry Realizes High-Rate Fiber-Shaped Zinc-Ion Battery as A Magnetically Soft Robot. Energy Storage Materials 2023, 55, 64–72.
https://www.sciencedirect.com/science/article/pii/S240582972200633X (通讯作者)
2022
51. Yang, H.; Li, J.; Xiao, X.; Wang, J.; Li, Y.; Li, K.; Li, Z.; Yang, H.; Wang, Q.; Yang, J., Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nature communications 2022, 13 (1), 1-15. https://bc446258-0496-4aa4-968a-c1ee4c12ef5b.filesusr.com/ugd/9be855_b5ee2b35e5f24fe0aac33416119b71fc.pdf
50. Yang, J.; Yang, H.; Ye, C.; Li, T.; Chen, G.; Qiu, Y., Conformal surface-nanocoating strategy to boost high-performance film cathodes for flexible zinc-ion batteries as an amphibious soft robot. Energy Storage Materials 2022, 46, 472-481. https://www.sciencedirect.com/science/article/pii/S2405829722000149 (第一作者)
49. Yang, J.; Wang, Y.; Yang, J.; Pang, Y.; Zhu, X.; Lu, Y.; Wu, Y.; Wang, J.; Chen, H.; Kou, Z., Quench‐induced surface engineering boosts alkaline freshwater and seawater oxygen evolution reaction of porous NiCo2O4 nanowires. Small 2022, 18 (3), 2106187. https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202106187
48. Yang, J.; Tian, H.; Li, Y.; Li, H.; Li, S.; Yang, H.; Ding, M.; Wang, X.; Chen, P.-Y., Eco-friendly synthesis of vanadium metal-organic frameworks from gasification waste for wearable Zn-ion batteries. Energy Storage Materials 2022, 53, 352-362. https://www.sciencedirect.com/science/article/abs/pii/S2405829722004962 (第一作者)
47. Pan, Z.; Yang, J.; Kong, J.; Loh, X. J.; Wang, J.; Liu, Z., “Porous and Yet Dense” Electrodes for high‐volumetric‐performance electrochemical capacitors: principles, advances, and challenges. Advanced Science 2022, 9 (4), 2103953. https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202103953
46. Pan, Z.; Cao, Q.; Gong, W.; Yang, J.; Gao, Y.; Gao, Y.; Pu, J.; Sun, J.; Loh, X. J.; Liu, Z., Zincophilic 3D ZnOHF nanowire arrays with ordered and continuous Zn2+ Ion modulation layer enable long-term stable Zn metal anodes. Energy Storage Materials 2022, 50, 435-443. https://www.sciencedirect.com/science/article/pii/S2405829722001957
45. Guo, K.; Fan, C.; Yu, Q.; Wang, J.; Deng, H.; Wang, T.; Liu, F.; Ding, X.; Pan, Z.; Zhu, S.; Yang, J.*; Zhang Q.L.; Wu J.; Zhou P,; Jiang Z.F. Time-domain flexible pulse fiber laser generation and high-power evolution based on inter-band excitation of lead sulfide nanoflakes. Optics Communications 2022, 529,129065.
https://www.sciencedirect.com/science/article/pii/S003040182200712X (通讯作者)
2021
44. Zhong, Y.; Lu, Y.; Pan, Z.; Yang, J.; Du, G.; Chen, J.; Zhang, Q.; Zhou, H.; Wang, J.; Wang, C., Efficient Water Splitting System Enabled by Multifunctional Platinum‐Free Electrocatalysts. Advanced Functional Materials 2021, 31 (20), 2009853. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202009853
43. Zhao, X.; Yin, Q.; Huang, H.; Yu, Q.; Liu, B.; Yang, J.; Dong, Z.; Shen, Z.; Zhu, B.; Liao, L., Van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response. Nano Research 2021, 14 (6), 1955-1960.
https://linkspringer.53yu.com/article/10.1007/s12274-020-2834-5
42. Yang, J.; Song, Z.-Y.; Guo, L.; Gao, H.; Dong, Z.; Yu, Q.; Zheng, R.-K.; Kang, T.-T.; Zhang, K., Nontrivial Giant Linear Magnetoresistance in Nodal-Line Semimetal ZrGeSe 2D Layers. Nano Letters 2021, 21 (23), 10139-10145. https://pubs.acs.org/doi/full/10.1021/acs.nanolett.1c01647 (第一作者)
41. Yang, J.; Pan, Z.; Zhong, J.; Li, S.; Wang, J.; Chen, P.-Y., Electrostatic self-assembly of heterostructured black phosphorus–MXene nanocomposites for flexible microsupercapacitors with high rate performance. Energy Storage Materials 2021, 36, 257-264. https://www.sciencedirect.com/science/article/pii/S2405829720304876(第一作者)
40. Pu, J.; Cao, Q.; Gao, Y.; Yang, J.; Cai, D.; Chen, X.; Tang, X.; Fu, G.; Pan, Z.; Guan, C., Ultrafast-charging quasi-solid-state fiber-shaped zinc-ion hybrid supercapacitors with superior flexibility. Journal of Materials Chemistry A 2021, 9 (32), 17292-17299. https://pubsrsc.53yu.com/
39. Pan, Z.; Liu, X.; Yang, J.*; Li, X.; Liu, Z.; Loh, X. J.; Wang, J., Aqueous Rechargeable Multivalent Metal‐Ion Batteries: Advances and Challenges. Advanced Energy Materials 2021, 11 (24), 2100608. https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.202100608(通讯作者)
38. Pan, Z.; Kang, L.; Li, T.; Waqar, M.; Yang, J.*; Gu, Q.; Liu, X.; Kou, Z.; Wang, Z.; Zheng, L., Black Phosphorus@ Ti3C2Tx MXene Composites with Engineered Chemical Bonds for Commercial-Level Capacitive Energy Storage. ACS Nano 2021, 15 (8), 12975-12987. https://pubs.acs.org/doi/full/10.1021/acsnano.1c01817 (通讯作者)
37. Li, S.; Chang, T.-H.; Li, Y.; Ding, M.; Yang, J.; Chen, P.-Y., Stretchable Ti3C2Tx MXene microsupercapacitors with high areal capacitance and quasi-solid-state multivalent neutral electrolyte. Journal of Materials Chemistry A 2021, 9 (8), 4664-4672. https://pubsrsc.53yu.com/en/content/articlelanding/2021/ta/d0ta10560k/unauth
36. Ding, M.; Li, S.; Guo, L.; Jing, L.; Gao, S. P.; Yang, H.; Little, J. M.; Dissanayake, T. U.; Li, K.; Yang, J., Metal Ion‐Induced Assembly of MXene Aerogels via Biomimetic Microtextures for Electromagnetic Interference Shielding, Capacitive Deionization, and Microsupercapacitors. Advanced Energy Materials 2021, 11 (35), 2101494.
35. Cao, Q.; Gao, H.; Gao, Y.; Yang, J.; Li, C.; Pu, J.; Du, J.; Yang, J.; Cai, D.; Pan, Z., Regulating dendrite‐free zinc deposition by 3D zincopilic nitrogen‐doped vertical graphene for high‐performance flexible Zn‐ion batteries. Advanced Functional Materials 2021, 31 (37), 2103922. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202103922
2020
34. Pan, Z.; Yang, J.; Zhang, Y.; Gao, X.; Wang, J., Quasi-solid-state fiber-shaped aqueous energy storage devices: recent advances and prospects. Journal of materials chemistry A 2020, 8 (14), 6406-6433. https://pubsrsc.53yu.com/en/content/articlelanding/2020/ta/c9ta13887k/unauth (共同一作)
33. Pan, Z.; Yang, J.; Li, L.; Gao, X.; Kang, L.; Zhang, Y.; Zhang, Q.; Kou, Z.; Zhang, T.; Wei, L., All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Storage Materials 2020, 25, 124-130. https://www.sciencedirect.com/science/article/abs/pii/S2405829719310190 (共同一作)
32. Pan, Z.; Yang, J.; Jiang, J.; Qiu, Y.; Wang, J., Flexible quasi-solid-state aqueous Zn-based batteries: rational electrode designs for high-performance and mechanical flexibility. Materials Today Energy 2020, 18, 100523. https://www.sciencedirect.com/science/article/pii/S2468606920301428
31. Liu, Y.; Pan, Z.; Tian, D.; Hu, T.; Jiang, H.; Yang, J.; Sun, J.; Zheng, J.; Meng, C.; Zhang, Y., Employing “one for two” strategy to design polyaniline-intercalated hydrated vanadium oxide with expanded interlayer spacing for high-performance aqueous zinc-ion batteries. Chemical Engineering Journal 2020, 399, 125842.
30. Liu, N.; Pan, Z.; Ding, X.; Yang, J.; Xu, G.; Li, L.; Wang, Q.; Liu, M.; Zhang, Y., In-situ growth of vertically aligned nickel cobalt sulfide nanowires on carbon nanotube fibers for high capacitance all-solid-state asymmetric fiber-supercapacitors. Journal of Energy Chemistry 2020, 41, 209-215.
29. Li, S.; Shi, Q.; Li, Y.; Yang, J.; Chang, T. H.; Jiang, J.; Chen, P. Y., Intercalation of Metal Ions into Ti3C2Tx MXene Electrodes for High‐Areal‐Capacitance Microsupercapacitors with Neutral Multivalent Electrolytes. Advanced Functional Materials 2020, 30 (40), 2003721.
28. Jiang, H.; Zhang, Y.; Liu, Y.; Yang, J.; Xu, L.; Wang, P.; Gao, Z.; Zheng, J.; Meng, C.; Pan, Z., In situ grown 2D hydrated ammonium vanadate nanosheets on carbon cloth as a free-standing cathode for high-performance rechargeable Zn-ion batteries. Journal of Materials Chemistry A 2020, 8 (30), 15130-15139.
2019
27. Zhong, Y.; Pan, Z.; Wang, X.; Yang, J.; Qiu, Y.; Xu, S.; Lu, Y.; Huang, Q.; Li, W., Hierarchical Co3O4 nano‐micro arrays featuring superior activity as cathode in a flexible and rechargeable zinc–air battery. Advanced Science 2019, 6 (11), 1802243.
26. Yin, Q.; Wang, J.; Shi, X.-Y.; Wang, T.; Yang, J.; Zhao, X.-X.; Shen, Z.-J.; Wu, J.; Zhang, K.; Zhou, P., Pulse generation of erbium-doped fiber laser based on liquid-exfoliated FePS3. Chinese Physics B 2019, 28 (8), 084208.
25. Yang, J.; Pan, Z.; Yu, Q.; Zhang, Q.; Ding, X.; Shi, X.; Qiu, Y.; Zhang, K.; Wang, J.; Zhang, Y., Free-standing black phosphorus thin films for flexible quasi-solid-state micro-supercapacitors with high volumetric power and energy density. ACS Applied Materials & Interfaces 2019, 11 (6), 5938-5946. https://pubs.acs.org/doi/full/10.1021/acsami.8b18172 (第一作者)
24. Yang, J. et. Al., Doped Graphene for Electrochemical Energy Storage Systems. John Wiley: Advanced Battery Materials 2019, Vol. 11. https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119407713#page=523 【金山文档】 10-Doped Graphene for Electrochemical Energy Storage Systems https://kdocs.cn/l/ccKrYo2b04HX (第一作者,专著章节)
23. Wang, X.; Pan, Z.; Yang, J.; Lyu, Z.; Zhong, Y.; Zhou, G.; Qiu, Y.; Zhang, Y.; Wang, J.; Li, W., Stretchable fiber-shaped lithium metal anode. Energy Storage Materials 2019, 22, 179-184.
22. Wang, T.; Jin, X.; Yang, J.; Wu, J.; Yu, Q.; Pan, Z.; Wu, H.; Li, J.; Su, R.; Xu, J., Ultra-stable pulse generation in ytterbium-doped fiber laser based on black phosphorus. Nanoscale Advances 2019, 1 (1), 195-202. https://pubsrsc.53yu.com/en/content/articlehtml/2019/na/c8na00221e (共同一作)
21. Wang, T.; Jin, X.; Yang, J.; Wu, J.; Yu, Q.; Pan, Z.; Shi, X.; Xu, Y.; Wu, H.; Wang, J., Oxidation-resistant black phosphorus enable highly ambient-stable ultrafast pulse generation at a 2 μm Tm/Ho-doped fiber laser. ACS Applied Materials & Interfaces 2019, 11 (40), 36854-36862. https://pubs.acs.org/doi/full/10.1021/acsami.9b12415 (共同一作)
20. Pan, Z.; Yang, J.; Zhang, Q.; Liu, M.; Hu, Y.; Kou, Z.; Liu, N.; Yang, X.; Ding, X.; Chen, H., All‐solid‐state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility. Advanced Energy Materials 2019, 9 (9), 1802753. https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201802753 (共同一作)
19. Pan, Z.; Yang, J.; Zang, W.; Kou, Z.; Wang, C.; Ding, X.; Guan, C.; Xiong, T.; Chen, H.; Zhang, Q., All-solid-state sponge-like squeezable zinc-air battery. Energy Storage Materials 2019, 23, 375-382. https://www.sciencedirect.com/science/article/pii/S2405829718315307 (共同一作)
18. Pan, Z.; Yang, J.; Yang, J.; Zhang, Q.; Zhang, H.; Li, X.; Kou, Z.; Zhang, Y.; Chen, H.; Yan, C., Stitching of Zn3 (OH) 2V2O7· 2H2O 2D nanosheets by 1D carbon nanotubes boosts ultrahigh rate for wearable quasi-solid-state zinc-ion batteries. ACS nano 2019, 14 (1), 842-853. https://pubs.acs.org/doi/full/10.1021/acsnano.9b07956
17. Pan, Z.; Chen, H.; Yang, J.; Ma, Y.; Zhang, Q.; Kou, Z.; Ding, X.; Pang, Y.; Zhang, L.; Gu, Q., CuCo2S4 nanosheets@ N‐doped carbon nanofibers by sulfurization at room temperature as bifunctional electrocatalysts in flexible quasi‐solid‐state Zn–air batteries. Advanced Science 2019, 6 (17), 1900628. https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201900628
16. Guo, L.; Chen, T.-W.; Chen, C.; Chen, L.; Zhang, Y.; Gao, G.-Y.; Yang, J.; Li, X.-G.; Zhao, W.-Y.; Dong, S., Electronic transport evidence for topological nodal-line semimetals of ZrGeSe single crystals. ACS Applied Electronic Materials 2019, 1 (6), 869-876.
15. Ding, X.; Pan, Z.; Liu, N.; Li, L.; Wang, X.; Xu, G.; Yang, J.; Yang, J.; Yu, N.; Liu, M., Freestanding carbon nanotube film for flexible straplike lithium/sulfur batteries. Chemistry–A European Journal 2019, 25 (15), 3775-3780.
14. Cheng, X.; Pan, Z.; Yang, J.; Zhong, Y.; Wang, X.; Ye, C.; Zhuang, J.; Huang, Q.; Yongcai, Q.; Li, W., Tungsten oxynitride nanowires as negative electrode for fiber-shaped supercapacitor. Journal of Power Sources 2019, 427, 243-249.
2018
13. Yang, J.; Yu, W.; Pan, Z.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y.; Sun, T.; Bao, Q.; Zhang, K., Ultra‐broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity. Small 2018, 14 (37), 1802598.
https://onlinelibrary.wiley.com/doi/full/10.1002/smll.201802598 (第一作者)
12. Yang, J.; Qin, H.; Zhang, K., Emerging terahertz photodetectors based on two-dimensional materials. Optics Communications 2018, 406, 36-43. https://www.sciencedirect.com/science/article/pii/S0030401817304200(第一作者)
11. Pan, Z.; Zhong, J.; Zhang, Q.; Yang, J.; Qiu, Y.; Ding, X.; Nie, K.; Yuan, H.; Feng, K.; Wang, X., Ultrafast all‐solid‐state coaxial asymmetric fiber supercapacitors with a high volumetric energy density. Advanced Energy Materials 2018, 8 (14), 1702946.
10. Pan, Z.; Zhi, H.; Qiu, Y.; Yang, J.; Xing, L.; Zhang, Q.; Ding, X.; Wang, X.; Xu, G.; Yuan, H., Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors. Nano energy 2018, 46, 266-276.
2017
9. Wang, M.; An, K.; Fang, Y.; Wei, G.; Yang, J.; Sheng, L.; Yu, L.; Zhao, X., The microwave absorbing properties of CoFe2 attached single-walled carbon nanotube/BaFe12O19 nanocomposites. Journal of Materials Science: Materials in Electronics 2017, 28 (17), 12475-12483.
8. Sun, X.; Sheng, L.; Yang, J.; An, K.; Yu, L.; Zhao, X., Three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO)/barium ferrite nanocomposites for electromagnetic absorption. Journal of Materials Science: Materials in Electronics 2017, 28 (17), 12900-12908.
7. Pan, Z.; Liu, M.; Yang, J.; Qiu, Y.; Li, W.; Xu, Y.; Zhang, X.; Zhang, Y., High electroactive material loading on a carbon nanotube@ 3D graphene aerogel for high‐performance flexible all‐solid‐state asymmetric supercapacitors. Advanced Functional Materials 2017, 27 (27), 1701122. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201701122 (共同一作)
6. 杨洁; 潘争辉; 盛雷梅; 安康; 赵新洛, Graphene Nanosheets Prepared by Arc Discharge Method and Their Application in Conductive Inkjet. 无机材料学报 2017, 32 (1), 39-44. (第一作者)
2016
5. Yang, J.; Liu, M.; Wei, Z.; Pan, Z.; Qiu, Y.; Ye, F.; Yang, Y.; Zhao, X.; Sheng, L.; Zhang, Y., Controlling electrochemical lithiation/delithiation reaction paths for long-cycle life nanochain-structured FeS2 electrodes. Electrochimica Acta 2016, 211, 671-678. https://www.sciencedirect.com/science/article/pii/S0013468616313846 (第一作者)
4. Pan, Z.; Qiu, Y.; Yang, J.; Ye, F.; Xu, Y.; Zhang, X.; Liu, M.; Zhang, Y., Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy 2016, 26, 610-619.
2015
3. Yang, J.; Li, G.; Pan, Z.; Liu, M.; Hou, Y.; Xu, Y.; Deng, H.; Sheng, L.; Zhao, X.; Qiu, Y., All-Solid-State High-Energy Asymmetric Supercapacitors Enabled by Three-Dimensional Mixed-Valent MnOX Nanospike and Graphene Electrodes. ACS Applied Materials & Interfaces 2015, 7 (40), 22172-22180. https://pubs.acs.org/doi/full/10.1021/acsami.5b07849(第一作者)
2. Qiu, Y.; Rong, G.; Yang, J.; Li, G.; Ma, S.; Wang, X.; Pan, Z.; Hou, Y.; Liu, M.; Ye, F., Highly nitridated graphene–Li2S cathodes with stable modulated cycles. Advanced Energy Materials 2015, 5 (23), 1501369. https://onlinelibrary.wiley.com/doi/10.1002/aenm.201501369
1. Pan, Z.; Qiu, Y.; Yang, J.; Liu, M.; Zhou, L.; Xu, Y.; Sheng, L.; Zhao, X.; Zhang, Y., Synthesis of three-dimensional hyperbranched TiO2 nanowire arrays with significantly enhanced photoelectrochemical hydrogen production. Journal of Materials Chemistry A 2015, 3 (7), 4004-4009. https://pubs.rsc.org/en/content/articlelanding/2015/TA/C4TA06498D