11618
当前位置: 首页   >  成果及论文
成果及论文

2014年参加教学科研工作并成立课题组之后发表文章:

  1. Zhang R, Zou Y, Wang C C, et al. The enhancement effects of multiple hydrogen bonds between bi-terminal groups and penta-alanine assemblies on creep resistance and mechanical strength of polyisoprene rubbers. Polymer [J], 2024, 299: 126940.

    https://www.sciencedirect.com/science/article/pii/S0032386124002751?via%3Dihub

  2. Wang X, Zhao Y H, Yao Y F, et al. Biomimetic design of polyisoprene rubber with terminal synergistic effects leading to mechanical properties and creep resistance boost. Polymer [J], 2024, 309: 127426.     

  3. Xie M J, He Y, Cao J, et al. Fabrication of Recyclable Polyisoprene Elastomers with Tuneable Mechanical Properties by Incorporating Dynamic Bonds and Separated Polystyrene Phase. Industrial & Engineering Chemistry Research [J], 2024, 63: 4176-4187     

  4. Cao J, Xie M J, Yang Y, et al. Critical effect of exchangeable units distribution on properties of vitrimers: Quantitatively controlling dynamics thus suppressing creep. Polymer [J], 2024, 292: 126653.     

  5. Xie M J, Wang C C, Zhang R, et al. Length effect of crosslinkers on the mechanical properties and dimensional stability of vitrimer elastomers with inhomogeneous networks. Polymer [J], 2024, 290: 126550.

    https://www.sciencedirect.com/science/article/pii/S0032386123008807?via%3Dihub

  6. Zhang R, Zou Y, Wang C C, et al. Confinement of Oligopeptides by Terminally Functionalized Polyisoprene to Improve Their Mechanical Strength, Creep Resistance, and Antifatigue Properties. ACS Applied Materials & Interfaces [J], 2024, 16: 1616-1627.

    https://pubs.acs.org/doi/10.1021/acsami.3c16568IF: 8.3 Q1 B2IF: 8.3 Q1 B2

  7. Zou Y, Yao Y F, Zhang R, et al. Biobased Recyclable Rubbers With Shape Memory, Self-welding, and Damping Properties by Cross-Linking Epoxidized Natural Rubber with Succinic Anhydride. ACS Sustainable Chemistry & Engineering [J], 2023, 11: 18123-18130.

    https://pubs.acs.org/doi/10.1021/acssuschemeng.3c07063IF: 7.1 Q1 B1IF: 7.1 Q1 B1

  8. Wang C C, Xie M J, Zhang R, et al. Improved strength, creep resistance and recyclability of polyisoprene vitrimers by bottom-up construction of inhomogeneous network. Polymer [J], 2023, 273: 125854.

    https://www.sciencedirect.com/science/article/pii/S0032386123001842?via%3Dihub

  9. He Y, Xu R, Zhang R, et al. Promoted Comprehensive Properties of Polyisoprene Rubber with Extremely High Fatigue Resistance Enabled by Oligopeptide Aggregates. Chinese Journal of Polymer Science [J], 2023, 41: 1250-1260.

    https://link.springer.com/article/10.1007/s10118-023-2933-3IF: 4.1 Q2 B2IF: 4.1 Q2 B2

  10. Chen M K, Zhao Y H, Zhang R, et al. Carbonate nanophase guided by terminally functionalized polyisoprene leading to a super tough, recyclable and transparent rubber. Chemical Engineering Journal [J], 2023, 452: 139130.

    https://www.sciencedirect.com/science/article/pii/S1385894722046095?via%3Dihub

  11. Cao J, Li S Q, Wang C C, et al. Recyclable Sulfur-Cured Rubbers with Enhanced Creep Resistance and Retained Mechanical Properties by Terminal Metal Coordination. Industrial & Engineering Chemistry Research [J], 2022, 61: 13136-13144.

    https://pubs.acs.org/doi/10.1021/acs.iecr.2c02089IF: 3.8 Q2 B3IF: 3.8 Q2 B3

  12. Wang C C, Yin H B, Bai S J, et al. Probe the terminal interactions and their synergistic effects on polyisoprene properties by mimicking the structure of natural rubber[J]. Polymer, 2021, 237: 124362.
     https://www.sciencedirect.com/science/article/abs/pii/S003238612100985X 

  13. Zhang Y, Wang Y, Shan T, et al. Non-Fullerene Acceptors with an Optical Response over 1000 nm toward Efficient Organic Solar Cells[J]. ACS Applied Materials & Interfaces, 2021, 3(43): 51279-51288.

    https://pubs.acs.org/doi/abs/10.1021/acsami.1c13404IF: 8.3 Q1 B2  

  14. Wang H C, Wang C C, Chen Y, et al. Synthesis and molecular properties of isomeric thienoisoindigo[J]. Journal of Materials Chemistry C, 2021, 9 (38): 13218-13225. 
    https://pubs.rsc.org/en/content/articlehtml/2021/tc/d1tc02948g

  15. Tang M, Bai S, Xu R, et al. Oligopeptide binding guided by spacer length lead to remarkably strong and stable network of polyisoprene elastomers[J]. Polymer, 2021: 124185.
    https://www.sciencedirect.com/science/article/pii/S0032386121008089?casa_token=ej8-cX6WxHoAAAAA:TbuA37J__G6O6DUkV7eakjrSrkxKOxu0no9KVhwr7_QH6nIt_MkFz_e7PCnA0QwWUFrK5TbUo3E

  16. Yang Y, Wang S, Wang C, et al. Toughening and enhancing thermostability of vitrimer rubber via adding heterocyclic aramid[J]. Composites Communications, 2021: 100934.   
    https://www.sciencedirect.com/science/article/pii/S2452213921003107?casa_token=KaBCEXktpFAAAAAA:cNLCfOGEUAtl78FmaGniUb2zJ8qlipElu0ktq_uSZQDOvqGA2cGORtyeMAbMb8qt2hnhJcBz_MU

  17. Cao J, Wang H C, Ren X, et al. Supramolecular aggregation for manipulating molecular packing by endgroups leading to mechanochromic fluorescence[J]. Dyes and Pigments, 2021, 195: 109668. 
    https://www.sciencedirect.com/science/article/pii/S0143720821005349?casa_token=d5nEqNT3xX4AAAAA:OmIPzJa2b2QOfsmlNj3LfJ4PxusMlJjiwe1rWz7HSbxbAnYR-HL7rAgpb7a5IWFYEpY57LmlAtA

  18. Chen Y, Wang H C, Tang Y, et al. Modulation of charge transport through single-molecule bilactam junctions by tuning hydrogen bonds[J]. Chemical Communications, 2021, 57(15): 1935-1938.  
    https://pubs.rsc.org/en/content/articlehtml/2021/cc/d0cc07423c

  19. Tang M, Xu R, Zhang R, et al. Bioinspired strategy to tune viscoelastic response of thermoplastic polyisoprene by retarding the dissociation of hydrogen bonding[J]. Polymer, 2021, 212: 123272.
    https://www.sciencedirect.com/science/article/abs/pii/S0032386120310971

  20. Chen M K, Zhang R, Tang M Z, et al. The Effect of Branching Structure on the Properties of Entangled or Non-covalently Crosslinked Polyisoprene[J]. Chinese Journal of Polymer Science, 2021, 39(1): 113-121.
    https://link.springer.com/article/10.1007/s10118-020-2480-0IF: 4.1 Q2 B2

  21. Li S Q, Tang M Z, Huang C, et al. The Relationship between Pendant Phosphate Groups and Mechanical Properties of Polyisoprene Rubber[J]. Chinese Journal of Polymer Science, 2020: 1-9.
    https://link.springer.com/article/10.1007/s10118-021-2497-zIF: 4.1 Q2 B2

  22.  Yang, Y.; Shan, T.; Cao, J.; Wang, H.-C.; Wang, J.-K.; Zhong, H.-L.; Xu, Y.-X. Unsymmetric Side Chains of Indacenodithiophene Copolymers Lead to Improved Packing and Device Performance. Chin. J. Polym. Sci. 2020, 38 (4), 342-348.   
    https://link.springer.com/article/10.1007/s10118-020-2342-9IF: 4.1 Q2 B2

  23. Cao, J.; Li, S.; Wang, H.-C.; Bai, S.-J.; Wang, Z.; Ren, X.; Xu, Y.-X. Distinct luminescent properties between thiophene-S-oxide and Thiophene-S, S-dioxides incorporated ladder-type molecules. Dyes and Pigments 2020, 175, 108147.
    https://www.sciencedirect.com/science/article/abs/pii/S0143720819327688

  24. Yao, K.; Zhong, H.; Liu, Z.; Xiong, M.; Leng, S.; Zhang, J.; Xu, Y.-x.; Wang, W.; Zhou, L.; Huang, H.; Jen, A. K. Y. Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells. ACS Nano 2019, 13 (5), 5397-5409.
    https://pubs.acs.org/doi/full/10.1021/acsnano.9b00135IF: 15.8 Q1 B1

  25.  Yao, K.; Leng, S.; Liu, Z.; Fei, L.; Chen, Y.; Li, S.; Zhou, N.; Zhang, J.; Xu, Y.-X.; Zhou, L.; Huang, H.; Jen, A. K. Y. Fullerene-Anchored Core-Shell ZnO Nanoparticles for Efficient and Stable Dual-Sensitized Perovskite Solar Cells. Joule 2019, 3 (2), 417-431.
    https://www.sciencedirect.com/science/article/pii/S2542435118305099

  26.  Wang, H.-C.; Ren, M.; Cao, J.; Yin, H.-B.; Zhang, G.; Xiao, J.; Ren, X.; Yip, H.-L.; Xu, Y.-X. A distorted lactam unit with intramolecular hydrogen bonds as the electron donor of polymer solar cells. J. Mater. Chem. C 2019, 7 (39), 12290-12296.
    https://pubs.rsc.org/en/content/articlelanding/2019/tc/c9tc04014e#!divAbstract

  27. Tang, M.; Zhang, R.; Fang, J.; Li, S.; Xu, Y.-X.; Huang, G. Ductile composites with strain hardening behavior constructing highly sensitive electronic sensor. Compos. Commun. 2019, 15, 20-24.  
    https://www.sciencedirect.com/science/article/pii/S2452213919300117

  28. Tang, L.-M.; Xiao, J.; Bai, W.-Y.; Li, Q.-Y.; Wang, H.-C.; Miao, M.-S.; Yip, H.-L.; Xu, Y.-X. End-chain effects of non-fullerene acceptors on polymer solar cells. Org. Electron. 2019, 64, 1-6.  
    https://www.sciencedirect.com/science/article/abs/pii/S1566119918305202

  29. Liu, Z.; Li, S.; Wang, X.; Cui, Y.; Qin, Y.; Leng, S.; Xu, Y.-x.; Yao, K.; Huang, H. Interfacial engineering of front-contact with finely tuned polymer interlayers for high-performance large-area flexible perovskite solar cells. Nano Energy 2019, 62, 734-744.
    https://www.sciencedirect.com/science/article/abs/pii/S2211285519304781

  30. Ling, F.-W.; Luo, M.-C.; Chen, M.-K.; Zeng, J.; Li, S.-Q.; Yin, H.-B.; Wu, J.-R.; Xu, Y.-X.; Huang, G. Terminally and randomly functionalized polyisoprene lead to distinct aggregation behaviors of polar groups. Polymer 2019, 178, 121629.
    https://www.sciencedirect.com/science/article/abs/pii/S0032386119306135

  31. Li, S.; Tang, M.; Huang, C.; Zhang, R.; Wu, J.; Ling, F.; Xu, Y.-X.; Huang, G. Branching function of terminal phosphate groups of polyisoprene chain. Polymer 2019, 174, 18-24.
    https://www.sciencedirect.com/science/article/abs/pii/S0032386119303738

  32. Cao, J.; Shan, T.; Wang, J.-K.; Xu, Y.-X.; Ren, X.; Zhong, H. Stereoisomerism of ladder-type acceptor molecules and its effect on photovoltaic properties. Dyes Pigm. 2019, 165, 354-360.
    https://www.sciencedirect.com/science/article/abs/pii/S0143720818328766

  33. Cao, J.; Liu, Q.-M.; Bai, S.-J.; Wang, H.-C.; Ren, X.; Xu, Y.-X. Ladder-Type Dye with Large Transition Dipole Moment for Solvatochromism and Microphase Visualization. ACS Appl. Mater. Interfaces 2019, 11 (33), 29814-29820. 
    https://pubs.acs.org/doi/abs/10.1021/acsami.9b07677IF: 8.3 Q1 B2

  34. Zhang, R.; Tang, M.-z.; Li, S.-q.; Xu, Y.-x.; Huang, G.-s. Effects of oligopeptides end-group on properties of polyisoprene with different molecular weights. Hecheng Xiangjiao Gongye 2018, 41 (4), 266-270.
    http://hcxjgy.paperopen.com/oa/DArticle.aspx?type=view&id=201804005

  35. Xiao, J.; Chen, Z.; Zhang, G.; Li, Q.-Y.; Yin, Q.; Jiang, X.; Huang, F.; Xu, Y.-X.; Yip, H.-L.; Cao, Y. Efficient device engineering for inverted non-fullerene organic solar cells with low energy loss. J. Mater. Chem. C 2018, 6 (16), 4457-4463.
    https://pubs.rsc.org/en/content/articlelanding/2018/tc/c8tc00705e#!divAbstract

  36. Wang, H.-C.; Tao, J.; Bai, W.-Y.; Xie, Z.-Y.; Ren, X.; Li, H.; Xu, Y.-X. Synthesis of a Thiophene Analogue of Isoindigo via C-H Activation/Oxidative Cyclization and Application of Its Copolymeric Materials to Organic Transistors. Eur. J. Org. Chem. 2018, 2018 (10), 1218-1223.
    https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/ejoc.201701663IF: 2.5 Q2 B3

  37. Wang, H.-C.; Li, Q.-Y.; Yin, H.-B.; Ren, X.; Yao, K.; Zheng, Y.; Xu, Y.-X. Synergistic Effects of Selenophene and Extended Ladder-Type Donor Units for Efficient Polymer Solar Cells. Macromol. Rapid Commun. 2018, 39 (2), 1700483.
    https://onlinelibrary.wiley.com/doi/full/10.1002/marc.201700483IF: 4.2 Q2 B3

  38. Tang, M.; Zhang, R.; Li, S.; Zeng, J.; Luo, M.; Xu, Y.-X.; Huang, G. Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy. Angew. Chem. Int. Ed. Engl. 2018, 57 (48), 15836-15840. 
    https://onlinelibrary.wiley.com/doi/10.1002/anie.201809339IF: 16.1 Q1 B1

  39. Wang, J.; Tang, L.; Xu, Y. Fused-ring non-fullerene acceptor for organic solar cells with elongated conjugation length. Gaofenzi Cailiao Kexue Yu Gongcheng 2018, 34 (8), 96-101. 
    https://www.researchgate.net/publication/328598848_Fused-Ring_Non-Fullerene_Acceptor_for_Organic_Solar_Cells_with_Elongated_Conjugation_Length

  40.  Bai, W.; Xu, X.; Li, Q.; Xu, Y.; Peng, Q. Efficient Nonfullerene Polymer Solar Cells Enabled by Small-Molecular Acceptors with a Decreased Fused-Ring Core. Small Methods 2018, 2 (5), 1700373.     
  41. Zeng, J.; Li, S.; Huang, G.; Xu, Y. Synthesis, characterization and rheological properties of tetrapepetide-terminated polyisoprene. Gaofenzi Cailiao Kexue Yu Gongcheng 2017, 33 (7), 1-5.
    https://www.researchgate.net/publication/320141783_Synthesis_Characterization_and_Rheological_Properties_of_Tetrapepetide-Terminated_Polyisoprene
     
  42. Sun, C.; Wu, Z.; Hu, Z.; Xiao, J.; Zhao, W.; Li, H.-W.; Li, Q.-Y.; Tsang, S.-W.; Xu, Y.-X.; Zhang, K.; Yip, H.-L.; Hou, J.; Huang, F.; Cao, Y. Interface design for high-efficiency non-fullerene polymer solar cells. Energy Environ. Sci. 2017, 10 (8), 1784-1791.
     https://pubs.rsc.org/en/content/articlelanding/2017/ee/c7ee00601b#!divAbstract

  43. Qin, T.; Zang, Y.; Bai, W.-Y.; Yao, K.; Xu, Y.-X. The Influence of Oxygen Atoms on Conformation and π–π Stacking of Ladder-Type Donor-Based Polymers and Their Photovoltaic Properties. Macromol. Rapid Commun. 2017, 38 (16), 1700156.
    https://www.onlinelibrary.wiley.com/doi/abs/10.1002/marc.201700156IF: 4.2 Q2 B3

  44. Li, Q.-Y.; Xiao, J.; Tang, L.-M.; Wang, H.-C.; Chen, Z.; Yang, Z.; Yip, H.-L.; Xu, Y.-X. Thermally stable high performance non-fullerene polymer solar cells with low energy loss by using ladder-type small molecule acceptors. Org. Electron. 2017, 44, 217-224.
    https://www.sciencedirect.com/science/article/pii/S1566119917300630

  45. Zuo, L.; Chang, C.-Y.; Chueh, C.-C.; Xu, Y.; Chen, H.; Jen, A. K. Y. Manipulation of optical field distribution in ITO-free micro-cavity polymer tandem solar cells via the out-of-cell capping layer for high photovoltaic performance. J. Mater. Chem. A 2016, 4 (3), 961-968.
    https://pubs.rsc.org/en/content/articlelanding/2016/ta/c5ta09247g#!divAbstract

  46. Wang, R.; Zhang, J.; Yin, Q.; Xu, Y.; Cheng, J.; Tong, R. Controlled Ring-Opening Polymerization of O-Carboxyanhydrides Using a β-Diiminate Zinc Catalyst. Angew. Chem., Int. Ed. 2016, 55 (42), 13010-13014.     
  47. Tang, L.; Yin, Q.; Xu, Y.; Zhou, Q.; Cai, K.; Yen, J.; Dobrucki, L. W.; Cheng, J. Bioorthogonal oxime ligation mediated in vivo cancer targeting. Chem. Sci. 2015, 6 (Copyright (C) 2015 American Chemical Society (ACS). All Rights Reserved.), 2182-2186.
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486360IF: 7.6 Q1 B1
     
  48. Intemann, J. J.; Yao, K.; Ding, F.; Xu, Y.; Xin, X.; Li, X.; Jen, A. K. Y. Enhanced Performance of Organic Solar Cells with Increased End Group Dipole Moment in Indacenodithieno[3,2-b]thiophene-Based Molecules. Adv. Funct. Mater. 2015, 25 (30), 4889–4897. 
    https://www.onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201501600IF: 18.5 Q1 B1

  49. Yao, K.; Wang, X.; Xu, Y.-x.; Li, F.; Zhou, L. Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable Large-Area Solar Cell. Chem. Mater. 2016, 28 (9), 3131–3138.
    https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b00711IF: 7.2 Q1 B2   
     
  50. Yao, K.; Jiao, H.; Xu, Y.-X.; He, Q.; Li, F.; Wang, X. Nano-bio hybrids of plasmonic metals/photosynthetic proteins for broad-band light absorption enhancement in organic solar cells. J. Mater. Chem. A 2016, 4 (35), 13400-13406.                   https://pubs.rsc.org/en/content/articlelanding/2016/ta/c6ta04356a#!divAbstract  
  51. Zang, Y.; Xu, Y.-X.; Chueh, C.-C.; Li, C.-Z.; Chen, H.-C.; Wei, K.-H.; Yu, J.-S.; Jen, A. K. Y. Photovoltaic performance of ladder-type indacenodithieno[3,2-b]thiophene-based polymers with alkoxyphenyl side chains. RSC Adv. 2015, 5 (Copyright (C) 2015 American Chemical Society (ACS). All Rights Reserved.), 26680-26685.  

  52. Yao, K.; Xu, Y.-X.; Wang, X.; Li, F.; Yuan, J. The critical role of additives in binary halogen-free solvent systems for the general processing of highly efficient organic solar cells. RSC Adv. 2015, 5 (114), 93689-93696.
    https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra19850j#!divAbstract

  53. Yao, K.; Xu, Y.-X.; Li, F.; Wang, X.; Zhou, L. A Simple and Universal Method to Increase Light Absorption in Ternary Blend Polymer Solar Cells Based on Ladder-Type Polymers. Advanced Optical Materials 2015, 3 (3), 321-327.  
  54. Yao, K.; Xin, X.-K.; Chueh, C.-C.; Chen, K.-S.; Xu, Y.-X.; Jen, A. K. Y. Enhanced Light-Harvesting by Integrating Synergetic Microcavity and Plasmonic Effects for High-Performance ITO-Free Flexible Polymer Solar Cells. Adv. Funct. Mater. 2015, 25 (Copyright (C) 2015 American Chemical Society (ACS). All Rights Reserved.), 567-574.
    https://www.onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201403297IF: 18.5 Q1 B1   
     
  55. Yao, K.; Wang, X.; Xu, Y.-x.; Li, F. A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite. Nano Energy 2015, 18, 165-175.
    https://www.sciencedirect.com/science/article/pii/S2211285515003894
     
  56. Wang, H.-C.; Tang, L.-M.; Zuo, L.; Chen, H.; Xu, Y.-X. Investigating the crystalline nature, charge transport properties and photovoltaic performances of ladder-type donor based small molecules. RSC Adv. 2015, 5 (98), 80677-80681.   https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra15896f#!divAbstract 
工作前发表文章:
  1.  Zuo, L.; Chueh, C.-C.; Xu, Y.-X.; Chen, K.-S.; Zang, Y.; Li, C.-Z.; Chen, H.; Jen, A. K. Y. Microcavity-Enhanced Light-Trapping for Highly Efficient Organic Parallel Tandem Solar Cells. Adv. Mater. 2014, 26 (39), 6778-6784.    
     
  2. Yao, K.; Salvador, M.; Chueh, C.-C.; Xin, X.-K.; Xu, Y.-X.; deQuilettes, D. W.; Hu, T.; Chen, Y.; Ginger, D. S.; Jen, A. K. Y. A General Route to Enhance Polymer Solar Cell Performance using Plasmonic Nanoprisms. Adv. Energy Mater. 2014, 4 (9), 1400206.    
    https://www.onlinelibrary.wiley.com/doi/full/10.1002/aenm.201400206IF: 24.4 Q1 B1  
     
  3. Xu, Y.-X.; Zhan, T.-G.; Zhao, X.; Li, Z.-T. Hydrogen bonding-driven highly stable homoduplexes formed by benzene/naphthalene amide oligomers. Organic Chemistry Frontiers 2014, 1, 73-78.
    https://pubs.rsc.org/en/content/articlelanding/2014/qo/c3qo00032j#!divAbstract          
     
  4. Li, Y.; Yao, K.; Yip, H.-L.; Ding, F.-Z.; Xu, Y.-X.; Li, X.; Chen, Y.; Jen, A. K. Y. Eleven-Membered Fused-Ring Low Band-Gap Polymer with Enhanced Charge Carrier Mobility and Photovoltaic Performance. Adv. Funct. Mater. 2014, 24 (Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved.), 3631-3638. 
    https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201303953IF: 18.5 Q1 B1          
     
  5. Intemann, J. J.; Yao, K.; Li, Y.-X.; Yip, H.-L.; Xu, Y.-X.; Liang, P.-W.; Chueh, C.-C.; Ding, F.-Z.; Yang, X.; Li, X.; Chen, Y.; Jen, A. K. Y. Highly Efficient Inverted Organic Solar Cells Through Material and Interfacial Engineering of Indacenodithieno[3,2-b]thiophene-Based Polymers and Devices. Adv. Funct. Mater. 2014, 24 (10), 1465–1473.
    https://onlinelibrary.wiley.com/doi/10.1002/adfm.201302426IF: 18.5 Q1 B1   
  6. Chen, K.-S.; Yip, H.-L.; Salinas, J.-F.; Xu, Y.-X.; Chueh, C.-C.; Jen, A. K. Y. Strong photocurrent enhancements in highly efficient flexible organic solar cells by adopting a microcavity configuration. Adv. Mater. (Weinheim, Ger.) 2014, 26 (Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved.), 3349-3354.
    https://www.onlinelibrary.wiley.com/doi/10.1002/adma.201306323IF: 27.4 Q1 B1   
  7. Xu, Y.-x.; Chueh, C.-C.; Yip, H.-L.; Chang, C.-Y.; Liang, P.-W.; Intemann, J.; Chen, W.-C.; Jen, A. Indacenodithieno [3, 2-b] thiophene-Based Broad Bandgap Polymers for High Efficiency Polymer Solar Cells. Polym. Chem. 2013, 4, 5220-5223.  
  8. Intemann, J. J.; Yao, K.; Yip, H.-L.; Xu, Y.-X.; Li, Y.-X.; Liang, P.-W.; Ding, F.-Z.; Li, X.; Jen, A. K. Y. Molecular Weight Effect on the Absorption, Charge Carrier Mobility, and Photovoltaic Performance of an Indacenodiselenophene-Based Ladder-Type Polymer. Chem. Mater. 2013, 25 (15), 3188-3195.
    https://pubs.acs.org/doi/10.1021/cm401586tIF: 7.2 Q1 B2

  9. Chueh, C.-C.; Yao, K.; Yip, H.-L.; Chang, C.-Y.; Xu, Y.-X.; Chen, K.-S.; Li, C.-Z.; Liu, P.; Huang, F.; Chen, Y.; Chen, W.-C.; Jen, A. K. Y. Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells. Energy Environ. Sci. 2013, 6 (11), 3241-3248          
     
  10. Zhang, Z.; Yin, L.; Tu, C.; Song, Z.; Zhang, Y.; Xu, Y.; Tong, R.; Zhou, Q.; Ren, J.; Cheng, J. Redox-Responsive, Core Cross-Linked Polyester Micelles. ACS Macro Lett. 2013, 2 (Copyright (C) 2015 American Chemical Society (ACS). All Rights Reserved.), 40-44.
     https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606897IF: 5.1 Q1 B1/

  11. Yin, Q.; Tong, R.; Xu, Y.; Baek, K.; Dobrucki, L. W.; Fan, T. M.; Cheng, J. Drug-Initiated Ring-Opening Polymerization of O-Carboxyanhydrides for the Preparation of Anticancer Drug–Poly (O-carboxyanhydride) Nanoconjugates. Biomacromolecules 2013, 14 (3), 920-929.
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671392IF: 5.5 Q1 B2/

  12. Li, Y.; Zou, J.; Yip, H.-L.; Li, C.-Z.; Zhang, Y.; Chueh, C.-C.; Intemann, J.; Xu, Y.; Liang, P.-W.; Chen, Y. Side-Chain Effect on Cyclopentadithiophene/Fluorobenzothiadiazole-Based Low Band Gap Polymers and Their Applications for Polymer Solar Cells. Macromolecules 2013, 46 (14), 5497-5503.
    https://pubs.acs.org/doi/abs/10.1021/ma4009302IF: 5.1 Q1 B1          
     
  13. Zhang, Z.; Yin, L.; Xu, Y.; Tong, R.; Lu, Y.; Ren, J.; Cheng, J. Facile Functionalization of Polyesters through Thiol-yne Chemistry for the Design of Degradable, Cell-Penetrating and Gene Delivery Dual-Functional Agents. Biomacromolecules 2012, 13 (11), 3456-3462.
    https://pubs.acs.org/doi/10.1021/bm301333wIF: 5.5 Q1 B2  
     
  14. Xu, Y.-X.; Chueh, C.-C.; Yip, H.-L.; Ding, F.-Z.; Li, Y.-X.; Li, C.-Z.; Li, X.; Chen, W.-C.; Jen, A. K. Y. Improved Charge Transport and Absorption Coefficient in Indacenodithieno[3,2-b]thiophene-based Ladder-Type Polymer Leading to Highly Efficient Polymer Solar Cells. Adv. Mater. 2012, 24 (47), 6356-6361.
    https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201203246IF: 27.4 Q1 B1  
     
  15. Lu, Y.; Yin, L.; Zhang, Y.; Zhang, Z.; Xu, Y.; Tong, R.; Cheng, J. Synthesis of Water-Soluble Poly (α-hydroxy acids) from Living Ring-Opening Polymerization of O-Benzyl-L-serine Carboxyanhydrides. ACS Macro Lett. 2012, 1 (4), 441-444.
    https://pubs.acs.org/doi/abs/10.1021/mz200165cIF: 5.1 Q1 B1  
     
  16. Zhang, Z.; Yin, L.; Tu, C.; Song, Z.; Zhang, Y.; Xu, Y.; Tong, R.; Zhou, Q.; Ren, J.; Cheng, J. Redox-responsive, core cross-linked polyester micelles. ACS Macro Lett. 2012, 2 (1), 40-44.
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606897IF: 5.1 Q1 B1/          
     
  17. Xu, Y.-X.; Zhan, T.-G.; Zhao, X.; Fang, Q.; Jiang, X.-K.; Li, Z.-T. Oligo (quinoxalineethynylene) s: synthesis, properties, and Ag+-mediated complanation. Chem. Commun. 2011, 47 (5), 1524-1526.
    https://pubs.rsc.org/en/content/articlelanding/2011/cc/c0cc03501g#!divAbstract   
  18. Tong, R.; Tang, L.; Yin, Q.; Xu, Y.; Gabrielson, N.; Cheng, J. Synthesis of polylactide-drug conjugates and nanoconjugates for cancer targeting and therapy. Polymeric Preprints (American Chemical Society, Division of Polymer Chemistry) 2011, 52 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.), 370-371.

  19. Xu, Y.-X.; Wang, G.-T.; Zhao, X.; Jiang, X.-K.; Li, Z.-T. Controllable self-assemblies of micro/nano-tubes and vesicles from arylamides and their applications as templates to fabricate Pt micro/nano-tubes and hollow Pt nanospheres. Soft Matter 2010, 6 (6), 1246-1252.
    https://pubs.rsc.org/en/content/articlelanding/2010/sm/b917576h#!divAbstract

  20. Xu, Y.-X.; Zhao, X.; Jiang, X.-K.; Li, Z.-T. Organic nanotubes assembled from isophthalamides and their application as templates to fabricate Pt nanotubes. Chem. Commun. 2009, 10.1039/b900843hIF: 4.3 Q2 B2              IF: 4.3 Q2 B2 (28), 4212-4214.
    https://pubs.rsc.org/en/content/articlelanding/2009/cc/b900843h#!divAbstract

  21. Xu, Y.-X.; Wang, G.-T.; Zhao, X.; Jiang, X.-K.; Li, Z.-T. Folding of Aromatic Amide-Based Oligomers Induced by Benzene-1,3,5-tricarboxylate Anion in DMSO. J. Org. Chem. 2009, 74 (19), 7267-7273.
    https://pubs.acs.org/doi/10.1021/jo901293bIF: 3.3 Q1 B2          
     

  22. Xu, Y.-X.; Wang, G.-T.; Zhao, X.; Jiang, X.-K.; Li, Z.-T. Self-assembly of vesicles from amphiphilic aromatic amide-based oligomers. Langmuir 2009, 25 (5), 2684-2688.
    https://pubs.acs.org/doi/abs/10.1021/la8034243IF: 3.7 Q2 B2          
     

  23. Du, P.; Xu, Y.; Jiang, X.; Li, Z. Complexation of two non-fully hydrogen bonded aromatic hydrazide heptamers toward n-octyl-α-L-glucopyranoside in chloroform. Science in China Series B: Chemistry 2009, 52 (4), 489-496.49.
    https://link.springer.com/article/10.1007%2Fs11426-008-0142-0

  24. Cai, W.; Wang, G.-T.; Xu, Y.-X.; Jiang, X.-K.; Li, Z.-T. Vesicles and organogels from foldamers: A solvent-modulated self-assembling process. J. Am. Chem. Soc. 2008, 130 (22), 6936-6937.
    https://pubs.acs.org/doi/10.1021/ja801618pIF: 14.4 Q1 B1          
     

  25. Liu, H.; Wu, J.; Xu, Y.-X.; Jiang, X.-K.; Li, Z.-T. Complexation of hydrogen bonding-driven preorganized di-and hexacationic bisporphyrin receptors for C 60 in aqueous and DMSO media. Tetrahedron Lett. 2007, 48 (41), 7327-7331.
    https://www.sciencedirect.com/science/article/pii/S0040403907016061

  26. Zhu, J.; Lin, J.-B.; Xu, Y.-X.; Shao, X.-B.; Jiang, X.-K.; Li, Z.-T. Hydrogen-bonding-mediated anthranilamide homoduplexes. increasing stability through preorganization and iterative arrangement of a simple amide binding site. J. Am. Chem. Soc. 2006, 128 (37), 12307-12313.
    https://pubs.acs.org/doi/10.1021/ja064218iIF: 14.4 Q1 B1

  27. Zhu, J.; Lin, J.-B.; Xu, Y.-X.; Jiang, X.-K.; Li, Z.-T. Hydrogen bonding-mediated self-assembly of anthranilamide-based homodimers through preorganization of the amido and ureido binding sites. Tetrahedron 2006, 62 (51), 11933-11941.
    https://www.sciencedirect.com/science/article/pii/S004040200601550X


专利:

  1. Xu Y.; Zhang R.;Yang Y. A bipolar end-group poly(conjugated diene), its vulcanized rubber and creep-modified vulcanized rubber. CN118307730A, 2024.

  2. XU Y.; Xie M.; Wang C. A high strength creep resistant recyclable modified isoprene rubber and its preparation method. CN115353597B, 2024.

  3. Xu Y.;Zhang R.;Yang Y. A modified polyisoprene rubber and its preparation method. CN116041715B, 2024.

  4. Xu Y.; Zou Y.A dynamic crosslinking recyclable elastomer and its preparation method. CN117757169A, 2024.

  5. Xu Y .;Wang X. A modified polyisoprene rubber and its preparation method and application. CN117264125A, 2023.

  6. Xu Y.; HE Y.; TANG M. A kind of high strength creep resistant recyclable diene elastomer and its preparation method. CN116874697A, 2023.

  7. Xu Y .;Yang Y.; Li S. A kind of high strength low relaxation polyisoprene rubber and its preparation method. CN113185639B, 2023.

  8. Xu Y.; Yang Y.; Xu Y.; Zhang R. A modified polyisoprene rubber and its preparation method. CN113121725B, 2022.

  9. Xu Y.; Yang Y.; Chen M. A kind of recyclable rubber and its preparation method. CN111393680A, 2020.

  10. Yin, C.; Tang, G.; Xu, Y. Method for preparing cushioning rubber pad used in rail traffic. CN110004776A, 2019.

  11. Xu, Y.; Ling, F.; Huang, G. Polysilsesquioxane-modified polyisoprene rubbers. CN109776805A, 2019.

  12. Xu, Y.; Ling, F.; Huang, G. Polysilsesquioxane modified polyisoprene rubber, and its preparation method. CN109776805A, 2019.

  13. Xu, Y.; Cao, J. Environmentally sensitive dye, its preparation method and application. CN109705147A, 2019.

  14. Yin, C.; Tang, G.; Xu, Y.; Zhou, C. A sliding door sealing strip angle and processing method [Machine Translation]. CN108099561A, 2018.

  15. Xu, Y.; Tang, M.; Huang, G. Preparation method of end group functionalized polyisoprene rubber. CN109096454A, 2018.

  16. Xu, Y.; Tang, M.; Huang, G. End group functional polyisoprene rubber and preparation method thereof [Machine Translation]. CN109096454A, 2018.

  17. Yin, C.; Tang, G.; Xu, Y. Nitrile rubber and preparation method thereof. CN107082914A, 2017.

  18. Yin, C.; Tang, G.; Xu, Y. High-strength highly insulating natural rubber and preparation method thereof. CN107417989A, 2017.