于2014年参加教学科研工作并成立课题组之后发表文章:
Zhang R, Zou Y, Wang C C, et al. The enhancement effects of multiple hydrogen bonds between bi-terminal groups and penta-alanine assemblies on creep resistance and mechanical strength of polyisoprene rubbers. Polymer [J], 2024, 299: 126940.
https://www.sciencedirect.com/science/article/pii/S0032386124002751?via%3Dihub
Xie M J, Wang C C, Zhang R, et al. Length effect of crosslinkers on the mechanical properties and dimensional stability of vitrimer elastomers with inhomogeneous networks. Polymer [J], 2024, 290: 126550.
https://www.sciencedirect.com/science/article/pii/S0032386123008807?via%3Dihub
Zhang R, Zou Y, Wang C C, et al. Confinement of Oligopeptides by Terminally Functionalized Polyisoprene to Improve Their Mechanical Strength, Creep Resistance, and Antifatigue Properties. ACS Applied Materials & Interfaces [J], 2024, 16: 1616-1627.
https://pubs.acs.org/doi/10.1021/acsami.3c16568IF: 8.3 Q1 IF: 8.3 Q1
Zou Y, Yao Y F, Zhang R, et al. Biobased Recyclable Rubbers With Shape Memory, Self-welding, and Damping Properties by Cross-Linking Epoxidized Natural Rubber with Succinic Anhydride. ACS Sustainable Chemistry & Engineering [J], 2023, 11: 18123-18130.
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c07063IF: 7.1 Q1 IF: 7.1 Q1
Wang C C, Xie M J, Zhang R, et al. Improved strength, creep resistance and recyclability of polyisoprene vitrimers by bottom-up construction of inhomogeneous network. Polymer [J], 2023, 273: 125854.
https://www.sciencedirect.com/science/article/pii/S0032386123001842?via%3Dihub
He Y, Xu R, Zhang R, et al. Promoted Comprehensive Properties of Polyisoprene Rubber with Extremely High Fatigue Resistance Enabled by Oligopeptide Aggregates. Chinese Journal of Polymer Science [J], 2023, 41: 1250-1260.
https://link.springer.com/article/10.1007/s10118-023-2933-3IF: 4.1 Q2 IF: 4.1 Q2
Chen M K, Zhao Y H, Zhang R, et al. Carbonate nanophase guided by terminally functionalized polyisoprene leading to a super tough, recyclable and transparent rubber. Chemical Engineering Journal [J], 2023, 452: 139130.
https://www.sciencedirect.com/science/article/pii/S1385894722046095?via%3Dihub
Cao J, Li S Q, Wang C C, et al. Recyclable Sulfur-Cured Rubbers with Enhanced Creep Resistance and Retained Mechanical Properties by Terminal Metal Coordination. Industrial & Engineering Chemistry Research [J], 2022, 61: 13136-13144.
https://pubs.acs.org/doi/10.1021/acs.iecr.2c02089IF: 3.8 Q2 IF: 3.8 Q2
Wang C C, Yin H B, Bai S J, et al. Probe the terminal interactions and their synergistic effects on polyisoprene properties by mimicking the structure of natural rubber[J]. Polymer, 2021, 237: 124362.
https://www.sciencedirect.com/science/article/abs/pii/S003238612100985X
Zhang Y, Wang Y, Shan T, et al. Non-Fullerene Acceptors with an Optical Response over 1000 nm toward Efficient Organic Solar Cells[J]. ACS Applied Materials & Interfaces, 2021, 3(43): 51279-51288.
https://pubs.acs.org/doi/abs/10.1021/acsami.1c13404IF: 8.3 Q1
Wang H C, Wang C C, Chen Y, et al. Synthesis and molecular properties of isomeric thienoisoindigo[J]. Journal of Materials Chemistry C, 2021, 9 (38): 13218-13225.
https://pubs.rsc.org/en/content/articlehtml/2021/tc/d1tc02948g
Tang M, Bai S, Xu R, et al. Oligopeptide binding guided by spacer length lead to remarkably strong and stable network of polyisoprene elastomers[J]. Polymer, 2021: 124185.
https://www.sciencedirect.com/science/article/pii/S0032386121008089?casa_token=ej8-cX6WxHoAAAAA:TbuA37J__G6O6DUkV7eakjrSrkxKOxu0no9KVhwr7_QH6nIt_MkFz_e7PCnA0QwWUFrK5TbUo3E
Yang Y, Wang S, Wang C, et al. Toughening and enhancing thermostability of vitrimer rubber via adding heterocyclic aramid[J]. Composites Communications, 2021: 100934.
https://www.sciencedirect.com/science/article/pii/S2452213921003107?casa_token=KaBCEXktpFAAAAAA:cNLCfOGEUAtl78FmaGniUb2zJ8qlipElu0ktq_uSZQDOvqGA2cGORtyeMAbMb8qt2hnhJcBz_MU
Cao J, Wang H C, Ren X, et al. Supramolecular aggregation for manipulating molecular packing by endgroups leading to mechanochromic fluorescence[J]. Dyes and Pigments, 2021, 195: 109668.
https://www.sciencedirect.com/science/article/pii/S0143720821005349?casa_token=d5nEqNT3xX4AAAAA:OmIPzJa2b2QOfsmlNj3LfJ4PxusMlJjiwe1rWz7HSbxbAnYR-HL7rAgpb7a5IWFYEpY57LmlAtA
Chen Y, Wang H C, Tang Y, et al. Modulation of charge transport through single-molecule bilactam junctions by tuning hydrogen bonds[J]. Chemical Communications, 2021, 57(15): 1935-1938.
https://pubs.rsc.org/en/content/articlehtml/2021/cc/d0cc07423c
Tang M, Xu R, Zhang R, et al. Bioinspired strategy to tune viscoelastic response of thermoplastic polyisoprene by retarding the dissociation of hydrogen bonding[J]. Polymer, 2021, 212: 123272.
https://www.sciencedirect.com/science/article/abs/pii/S0032386120310971
Chen M K, Zhang R, Tang M Z, et al. The Effect of Branching Structure on the Properties of Entangled or Non-covalently Crosslinked Polyisoprene[J]. Chinese Journal of Polymer Science, 2021, 39(1): 113-121.
https://link.springer.com/article/10.1007/s10118-020-2480-0IF: 4.1 Q2
Li S Q, Tang M Z, Huang C, et al. The Relationship between Pendant Phosphate Groups and Mechanical Properties of Polyisoprene Rubber[J]. Chinese Journal of Polymer Science, 2020: 1-9.
https://link.springer.com/article/10.1007/s10118-021-2497-zIF: 4.1 Q2
Yang, Y.; Shan, T.; Cao, J.; Wang, H.-C.; Wang, J.-K.; Zhong, H.-L.; Xu, Y.-X. Unsymmetric Side Chains of Indacenodithiophene Copolymers Lead to Improved Packing and Device Performance. Chin. J. Polym. Sci. 2020, 38 (4), 342-348.
https://link.springer.com/article/10.1007/s10118-020-2342-9IF: 4.1 Q2
Cao, J.; Li, S.; Wang, H.-C.; Bai, S.-J.; Wang, Z.; Ren, X.; Xu, Y.-X. Distinct luminescent properties between thiophene-S-oxide and Thiophene-S, S-dioxides incorporated ladder-type molecules. Dyes and Pigments 2020, 175, 108147.
https://www.sciencedirect.com/science/article/abs/pii/S0143720819327688
Yao, K.; Zhong, H.; Liu, Z.; Xiong, M.; Leng, S.; Zhang, J.; Xu, Y.-x.; Wang, W.; Zhou, L.; Huang, H.; Jen, A. K. Y. Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells. ACS Nano 2019, 13 (5), 5397-5409.
https://pubs.acs.org/doi/full/10.1021/acsnano.9b00135IF: 15.8 Q1
Yao, K.; Leng, S.; Liu, Z.; Fei, L.; Chen, Y.; Li, S.; Zhou, N.; Zhang, J.; Xu, Y.-X.; Zhou, L.; Huang, H.; Jen, A. K. Y. Fullerene-Anchored Core-Shell ZnO Nanoparticles for Efficient and Stable Dual-Sensitized Perovskite Solar Cells. Joule 2019, 3 (2), 417-431.
https://www.sciencedirect.com/science/article/pii/S2542435118305099
Wang, H.-C.; Ren, M.; Cao, J.; Yin, H.-B.; Zhang, G.; Xiao, J.; Ren, X.; Yip, H.-L.; Xu, Y.-X. A distorted lactam unit with intramolecular hydrogen bonds as the electron donor of polymer solar cells. J. Mater. Chem. C 2019, 7 (39), 12290-12296.
https://pubs.rsc.org/en/content/articlelanding/2019/tc/c9tc04014e#!divAbstract
Tang, M.; Zhang, R.; Fang, J.; Li, S.; Xu, Y.-X.; Huang, G. Ductile composites with strain hardening behavior constructing highly sensitive electronic sensor. Compos. Commun. 2019, 15, 20-24.
https://www.sciencedirect.com/science/article/pii/S2452213919300117
Tang, L.-M.; Xiao, J.; Bai, W.-Y.; Li, Q.-Y.; Wang, H.-C.; Miao, M.-S.; Yip, H.-L.; Xu, Y.-X. End-chain effects of non-fullerene acceptors on polymer solar cells. Org. Electron. 2019, 64, 1-6.
https://www.sciencedirect.com/science/article/abs/pii/S1566119918305202
Liu, Z.; Li, S.; Wang, X.; Cui, Y.; Qin, Y.; Leng, S.; Xu, Y.-x.; Yao, K.; Huang, H. Interfacial engineering of front-contact with finely tuned polymer interlayers for high-performance large-area flexible perovskite solar cells. Nano Energy 2019, 62, 734-744.
https://www.sciencedirect.com/science/article/abs/pii/S2211285519304781
Ling, F.-W.; Luo, M.-C.; Chen, M.-K.; Zeng, J.; Li, S.-Q.; Yin, H.-B.; Wu, J.-R.; Xu, Y.-X.; Huang, G. Terminally and randomly functionalized polyisoprene lead to distinct aggregation behaviors of polar groups. Polymer 2019, 178, 121629.
https://www.sciencedirect.com/science/article/abs/pii/S0032386119306135
Li, S.; Tang, M.; Huang, C.; Zhang, R.; Wu, J.; Ling, F.; Xu, Y.-X.; Huang, G. Branching function of terminal phosphate groups of polyisoprene chain. Polymer 2019, 174, 18-24.
https://www.sciencedirect.com/science/article/abs/pii/S0032386119303738
Cao, J.; Shan, T.; Wang, J.-K.; Xu, Y.-X.; Ren, X.; Zhong, H. Stereoisomerism of ladder-type acceptor molecules and its effect on photovoltaic properties. Dyes Pigm. 2019, 165, 354-360.
https://www.sciencedirect.com/science/article/abs/pii/S0143720818328766
Cao, J.; Liu, Q.-M.; Bai, S.-J.; Wang, H.-C.; Ren, X.; Xu, Y.-X. Ladder-Type Dye with Large Transition Dipole Moment for Solvatochromism and Microphase Visualization. ACS Appl. Mater. Interfaces 2019, 11 (33), 29814-29820.
https://pubs.acs.org/doi/abs/10.1021/acsami.9b07677IF: 8.3 Q1
Zhang, R.; Tang, M.-z.; Li, S.-q.; Xu, Y.-x.; Huang, G.-s. Effects of oligopeptides end-group on properties of polyisoprene with different molecular weights. Hecheng Xiangjiao Gongye 2018, 41 (4), 266-270.
http://hcxjgy.paperopen.com/oa/DArticle.aspx?type=view&id=201804005
Xiao, J.; Chen, Z.; Zhang, G.; Li, Q.-Y.; Yin, Q.; Jiang, X.; Huang, F.; Xu, Y.-X.; Yip, H.-L.; Cao, Y. Efficient device engineering for inverted non-fullerene organic solar cells with low energy loss. J. Mater. Chem. C 2018, 6 (16), 4457-4463.
https://pubs.rsc.org/en/content/articlelanding/2018/tc/c8tc00705e#!divAbstract
Wang, H.-C.; Tao, J.; Bai, W.-Y.; Xie, Z.-Y.; Ren, X.; Li, H.; Xu, Y.-X. Synthesis of a Thiophene Analogue of Isoindigo via C-H Activation/Oxidative Cyclization and Application of Its Copolymeric Materials to Organic Transistors. Eur. J. Org. Chem. 2018, 2018 (10), 1218-1223.
https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/ejoc.201701663IF: 2.5 Q2
Wang, H.-C.; Li, Q.-Y.; Yin, H.-B.; Ren, X.; Yao, K.; Zheng, Y.; Xu, Y.-X. Synergistic Effects of Selenophene and Extended Ladder-Type Donor Units for Efficient Polymer Solar Cells. Macromol. Rapid Commun. 2018, 39 (2), 1700483.
https://onlinelibrary.wiley.com/doi/full/10.1002/marc.201700483IF: 4.2 Q2
Tang, M.; Zhang, R.; Li, S.; Zeng, J.; Luo, M.; Xu, Y.-X.; Huang, G. Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy. Angew. Chem. Int. Ed. Engl. 2018, 57 (48), 15836-15840.
https://onlinelibrary.wiley.com/doi/10.1002/anie.201809339IF: 16.1 Q1
Wang, J.; Tang, L.; Xu, Y. Fused-ring non-fullerene acceptor for organic solar cells with elongated conjugation length. Gaofenzi Cailiao Kexue Yu Gongcheng 2018, 34 (8), 96-101.
https://www.researchgate.net/publication/328598848_Fused-Ring_Non-Fullerene_Acceptor_for_Organic_Solar_Cells_with_Elongated_Conjugation_Length
Sun, C.; Wu, Z.; Hu, Z.; Xiao, J.; Zhao, W.; Li, H.-W.; Li, Q.-Y.; Tsang, S.-W.; Xu, Y.-X.; Zhang, K.; Yip, H.-L.; Hou, J.; Huang, F.; Cao, Y. Interface design for high-efficiency non-fullerene polymer solar cells. Energy Environ. Sci. 2017, 10 (8), 1784-1791.
https://pubs.rsc.org/en/content/articlelanding/2017/ee/c7ee00601b#!divAbstract
Qin, T.; Zang, Y.; Bai, W.-Y.; Yao, K.; Xu, Y.-X. The Influence of Oxygen Atoms on Conformation and π–π Stacking of Ladder-Type Donor-Based Polymers and Their Photovoltaic Properties. Macromol. Rapid Commun. 2017, 38 (16), 1700156.
https://www.onlinelibrary.wiley.com/doi/abs/10.1002/marc.201700156IF: 4.2 Q2
Li, Q.-Y.; Xiao, J.; Tang, L.-M.; Wang, H.-C.; Chen, Z.; Yang, Z.; Yip, H.-L.; Xu, Y.-X. Thermally stable high performance non-fullerene polymer solar cells with low energy loss by using ladder-type small molecule acceptors. Org. Electron. 2017, 44, 217-224.
https://www.sciencedirect.com/science/article/pii/S1566119917300630
Zuo, L.; Chang, C.-Y.; Chueh, C.-C.; Xu, Y.; Chen, H.; Jen, A. K. Y. Manipulation of optical field distribution in ITO-free micro-cavity polymer tandem solar cells via the out-of-cell capping layer for high photovoltaic performance. J. Mater. Chem. A 2016, 4 (3), 961-968.
https://pubs.rsc.org/en/content/articlelanding/2016/ta/c5ta09247g#!divAbstract
Intemann, J. J.; Yao, K.; Ding, F.; Xu, Y.; Xin, X.; Li, X.; Jen, A. K. Y. Enhanced Performance of Organic Solar Cells with Increased End Group Dipole Moment in Indacenodithieno[3,2-b]thiophene-Based Molecules. Adv. Funct. Mater. 2015, 25 (30), 4889–4897.
https://www.onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201501600IF: 18.5 Q1
Yao, K.; Xu, Y.-X.; Wang, X.; Li, F.; Yuan, J. The critical role of additives in binary halogen-free solvent systems for the general processing of highly efficient organic solar cells. RSC Adv. 2015, 5 (114), 93689-93696.
https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra19850j#!divAbstract
Intemann, J. J.; Yao, K.; Yip, H.-L.; Xu, Y.-X.; Li, Y.-X.; Liang, P.-W.; Ding, F.-Z.; Li, X.; Jen, A. K. Y. Molecular Weight Effect on the Absorption, Charge Carrier Mobility, and Photovoltaic Performance of an Indacenodiselenophene-Based Ladder-Type Polymer. Chem. Mater. 2013, 25 (15), 3188-3195.
https://pubs.acs.org/doi/10.1021/cm401586tIF: 7.2 Q1
Zhang, Z.; Yin, L.; Tu, C.; Song, Z.; Zhang, Y.; Xu, Y.; Tong, R.; Zhou, Q.; Ren, J.; Cheng, J. Redox-Responsive, Core Cross-Linked Polyester Micelles. ACS Macro Lett. 2013, 2 (Copyright (C) 2015 American Chemical Society (ACS). All Rights Reserved.), 40-44.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606897IF: 5.1 Q1 /
Yin, Q.; Tong, R.; Xu, Y.; Baek, K.; Dobrucki, L. W.; Fan, T. M.; Cheng, J. Drug-Initiated Ring-Opening Polymerization of O-Carboxyanhydrides for the Preparation of Anticancer Drug–Poly (O-carboxyanhydride) Nanoconjugates. Biomacromolecules 2013, 14 (3), 920-929.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671392IF: 5.5 Q1 /
Xu, Y.-X.; Wang, G.-T.; Zhao, X.; Jiang, X.-K.; Li, Z.-T. Controllable self-assemblies of micro/nano-tubes and vesicles from arylamides and their applications as templates to fabricate Pt micro/nano-tubes and hollow Pt nanospheres. Soft Matter 2010, 6 (6), 1246-1252.
https://pubs.rsc.org/en/content/articlelanding/2010/sm/b917576h#!divAbstract
Xu, Y.-X.; Zhao, X.; Jiang, X.-K.; Li, Z.-T. Organic nanotubes assembled from isophthalamides and their application as templates to fabricate Pt nanotubes. Chem. Commun. 2009, 10.1039/b900843hIF: 4.3 Q2 IF: 4.3 Q2 (28), 4212-4214.
https://pubs.rsc.org/en/content/articlelanding/2009/cc/b900843h#!divAbstract
Du, P.; Xu, Y.; Jiang, X.; Li, Z. Complexation of two non-fully hydrogen bonded aromatic hydrazide heptamers toward n-octyl-α-L-glucopyranoside in chloroform. Science in China Series B: Chemistry 2009, 52 (4), 489-496.49.
https://link.springer.com/article/10.1007%2Fs11426-008-0142-0
Liu, H.; Wu, J.; Xu, Y.-X.; Jiang, X.-K.; Li, Z.-T. Complexation of hydrogen bonding-driven preorganized di-and hexacationic bisporphyrin receptors for C 60 in aqueous and DMSO media. Tetrahedron Lett. 2007, 48 (41), 7327-7331.
https://www.sciencedirect.com/science/article/pii/S0040403907016061
Zhu, J.; Lin, J.-B.; Xu, Y.-X.; Shao, X.-B.; Jiang, X.-K.; Li, Z.-T. Hydrogen-bonding-mediated anthranilamide homoduplexes. increasing stability through preorganization and iterative arrangement of a simple amide binding site. J. Am. Chem. Soc. 2006, 128 (37), 12307-12313.
https://pubs.acs.org/doi/10.1021/ja064218iIF: 14.4 Q1
Zhu, J.; Lin, J.-B.; Xu, Y.-X.; Jiang, X.-K.; Li, Z.-T. Hydrogen bonding-mediated self-assembly of anthranilamide-based homodimers through preorganization of the amido and ureido binding sites. Tetrahedron 2006, 62 (51), 11933-11941.
https://www.sciencedirect.com/science/article/pii/S004040200601550X
专利:
Xu Y.; Zhang R.;Yang Y. A bipolar end-group poly(conjugated diene), its vulcanized rubber and creep-modified vulcanized rubber. CN118307730A, 2024.
XU Y.; Xie M.; Wang C. A high strength creep resistant recyclable modified isoprene rubber and its preparation method. CN115353597B, 2024.
Xu Y.;Zhang R.;Yang Y. A modified polyisoprene rubber and its preparation method. CN116041715B, 2024.
Xu Y.; Zou Y.A dynamic crosslinking recyclable elastomer and its preparation method. CN117757169A, 2024.
Xu Y .;Wang X. A modified polyisoprene rubber and its preparation method and application. CN117264125A, 2023.
Xu Y.; HE Y.; TANG M. A kind of high strength creep resistant recyclable diene elastomer and its preparation method. CN116874697A, 2023.
Xu Y .;Yang Y.; Li S. A kind of high strength low relaxation polyisoprene rubber and its preparation method. CN113185639B, 2023.
Xu Y.; Yang Y.; Xu Y.; Zhang R. A modified polyisoprene rubber and its preparation method. CN113121725B, 2022.
Xu Y.; Yang Y.; Chen M. A kind of recyclable rubber and its preparation method. CN111393680A, 2020.
Yin, C.; Tang, G.; Xu, Y. Method for preparing cushioning rubber pad used in rail traffic. CN110004776A, 2019.
Xu, Y.; Ling, F.; Huang, G. Polysilsesquioxane-modified polyisoprene rubbers. CN109776805A, 2019.
Xu, Y.; Ling, F.; Huang, G. Polysilsesquioxane modified polyisoprene rubber, and its preparation method. CN109776805A, 2019.
Xu, Y.; Cao, J. Environmentally sensitive dye, its preparation method and application. CN109705147A, 2019.
Yin, C.; Tang, G.; Xu, Y.; Zhou, C. A sliding door sealing strip angle and processing method [Machine Translation]. CN108099561A, 2018.
Xu, Y.; Tang, M.; Huang, G. Preparation method of end group functionalized polyisoprene rubber. CN109096454A, 2018.
Xu, Y.; Tang, M.; Huang, G. End group functional polyisoprene rubber and preparation method thereof [Machine Translation]. CN109096454A, 2018.
Yin, C.; Tang, G.; Xu, Y. Nitrile rubber and preparation method thereof. CN107082914A, 2017.
Yin, C.; Tang, G.; Xu, Y. High-strength highly insulating natural rubber and preparation method thereof. CN107417989A, 2017.