1253
当前位置: 首页   >  成果及论文
成果及论文

一、主要科学发现

1. 适应极端环境的表型演化机制

       通过对沿海拔梯度分布的小型雀形目鸟类的形态与生理特征分析,发现高原鸟类采取共同生理策略应对低氧胁迫,并维持较大体型与肌肉重量,这为研究低氧引起的肌肉萎缩提供了新的认识 (Plos Genetics, 2020; Molecular Biology and Evolution, 2021);
2. 适应极端环境的遗传与分子机制

       利用比较转录组与群体遗传探讨鸟类抵抗低氧环境的遗传与分子机制,发现趋同表达与高原骨骼肌表型有关(MEF2C等);并且高低海拔种群间高分化基因的趋同氨基酸替换可能参与低氧适应(METTL8, HBB等)(Plos Genetics, 2020; Integrative Zoology, 2022);
3. 功能基因的多样性与适应性演化

       跨物种比较分析探讨鸟类基因丢失与功能补偿,发现鸟类丢失了在其他脊椎动物中保守的 SLC2A4基因,其编码对胰岛素敏感的葡萄糖转运蛋白,系统发育与RNA干扰实验证实较古老基因SLC2A12在功能上补偿了新近起源基因 SLC2A4的丢失,并发现其在鸟类中具有新的功能(Molecular Biology and Evolution, 2021)。
4. 岛屿鸟类与哺乳类趋同代谢策略和濒危机制

      通过构建了2813种脊椎动物的代谢数据库,利用系统发育与演化路径分析等方法揭示了岛屿鸟类和哺乳动物向慢生活节奏的代谢策略的趋同演化。这种慢生活节奏的趋同代谢特征加剧了岛屿特有物种在面对入侵物种和其他人为威胁时的灭绝风险,提示生理性状在物种生存与灭绝中扮演重要角色(Science Advances, 2024)。

5. 气候变化对生物多样性的影响机制

      通过结合系统发育方法和化石数据,综合分析了鹱形类(Procellariimorphae,PM)和非鹱形类(non-Procellariimorphae,NPM)两组共328种海鸟的丰富度和体重的空间格局,以及温度对其的潜在影响。揭示适应寒冷温度的海鸟在温暖水域中,体重和分化速率降低,使其更容易受到全球变暖的影响(Global Change Biology, 2024)。


二、发表论文、专著的情况

2024年(*通讯作者,#第一作者)
20. Qi Yang #, Ziyi Wang #, Liqing Fan, Dehua Wang, Fumin Lei, Ying Xiong (熊鹰)*.Global patterns, drivers and impacts of metabolic traits across amniotes.bioRxiv.doi: https://doi.org/10.1101/2024.09.28.615629
19. Lin He, Liqing Fan,...,Ying Xiong (熊鹰) *. The genetics and single-cell transcriptome atlas of high learning complexity in a hybrid songbird. (in preparation)
18. Wangyu Ren #, Junwen Hou #, Jidong Zhao, Yajuan Du,...,Ying Xiong (熊鹰)*. Gut microbiota explains why female passerines avoid high-sugar-induced obesity better than female non-passerines. (in revision)
17. Yizhou Zhang, Yongfang Yao, Huailiang Xu, Fumin Lei, Liqing Fan * and Ying Xiong (熊鹰)*. Large brain drives the evolutionary trade-off between sexual and natural selection on long-tailed birds. (in revision)
16. Ying Xiong (熊鹰)*,Liqing Fan,et al. Coupled evolution of growth trajectories and diversification in modern birds rather than their precursors. (in review)
15. Ying Xiong (熊鹰)* , et al. Recurrent evolution of endothermy impacts on tetrapod vertebrate diversification and adaptive radiation. (in revision)
14. Ying Xiong (熊鹰)#*,Liqing Fan #,Yongbin Chang #, et al. Warm temperature is associated with reduced body mass and diversification rates while increasing extinction risks in cold-adapted seabirds. Global Change Biology, 2024, 12, e70000.
13. Ying Xiong (熊鹰)#* , et al. Convergent evolution towards a slow pace of life predisposes insular endotherms to anthropogenic extinctions. Science Advances, 2024, 10, eadm8240.

2023年(*通讯作者,#第一作者)
12. Zhao JS, Yao YF, Dong MM, Xiao HT, Xiong Y, Yang SZ, ... & Xu HL. Diet and high altitude strongly drive convergent adaptation of gut microbiota in wild macaques, humans and dogs to high altitude environments. Frontiers in Microbiology, 2023, 14, 437.
11. Zou Q, Wang X, Yuan R, Gong Z, Luo C, Xiong Y, & Jiang Y. Circ004463 promotes fibroblast proliferation and collagen I synthesis by sponging miR-23b and regulating CADM3/MAP4K4 via activation of AKT/ERK pathways. International Journal of Biological Macromolecules, 2023, 226, 357-367.
10. Wu Y, Xiong Y, Ji Y, Cheng Y, Zhu Q, Jiao X, ... & Song G. Metabolic and microbial changes in light-vented bulbul during recent northward range expansion. Current Zoology, 2023, zoad005.

2017-2022年
9. Xiong Y, Lei F. SLC2A12 of SLC2 Gene Family in Bird Provides Functional Compensation for the Loss of SLC2A4 Gene in Other Vertebrates. Molecular Biology and Evolution, 2021, 38(4): 1276-1291.
8. Xiong Y, Fan L, Hao Y, Cheng Y, Chang Y, Wang J, Lin H, Song G, Qu Y, Lei F. Physiological and genetic convergence supports hypoxia resistance in high-altitude songbirds. PLoS Genetics, 2020, 16(12):e1009270.
7. Xiong Y, Hao Y, Cheng Y, Fan L, Song G, Li D, Qu Y, Lei F. Comparative transcriptomic and metabolomic analysis reveals pectoralis highland adaptation across altitudinal songbirds. Integretive Zoology, 2022, 17(6), 1162-1178.
6. Zou Q, Zhang M, Yuan R, Wang Y, Gong Z, Shi R, ... Xiong Y, ... & Jiang, Y. Small extracellular vesicles derived from dermal fibroblasts promote fibroblast activity and skin development through carrying miR-218 and ITGBL1. Journal of Nanobiotechnology, 2022, 20(1), 1-16.
5. Cheng Y, Miller MJ, Zhang D, Xiong Y, Hao Y, Jia C, ... & Lei F. Parallel genomic responses to historical climate change and high elevation in East Asian songbirds. Proceedings of the National Academy of Sciences,2021, 118(50), e2023918118.
4. Zhang D, Tang L, Chengn Y, Hao Y, Xiong Y, Song G, ... & Lei F. “Ghost introgression” as a cause of deep mitochondrial divergence in a bird species complex. Molecular Biology and Evolution, 2019, 36(11), 2375-2386.
3. Hao Y, Xiong Y, Cheng Y, Song G, Jia C, Qu Y, & Lei F. Comparative transcriptomics of 3 high-altitude passerine birds and their low-altitude relatives. Proceedings of the National Academy of Sciences, 2019, 116(24), 11851-11856.
2. Fan L, Cai T, Xiong Y, Song G, & Lei F. Bergmann’s rule and Allen’s rule in two passerine birds in China. Avian Research, 2019, 10, 1-11.
1. 熊鹰; 雷富民. 鸟类对高海拔环境的适应性演化:从表型到基因组.中国科学. 生命科学. 2017,62, 1628.