714
当前位置: 首页   >  成果及论文
成果及论文

26. Wang, H.; Zeng, G.; Yang, Z.; Chen, X.; Wang, L.; Xiang, Y.; Zeng, X.; Feng, Z.; Tang, B.; Yu, X., Nanofiltration membrane based on a dual-reinforcement strategy of support and selective layers for efficient Mg2+/Li+ separation. Separation and Purification Technology 2024, 330, 125254.

25. Chen, X.; Chen, X.; Peng, Y.; Zhu, L.; Wang, W., Dielectrophoretic Colloidal Levitation by Electrode Polarization in Oscillating Electric Fields. Langmuir 2023, 39 (19), 6932-6945.

24. Chen, X.; Chen, X.; Elsayed, M.; Edwards, H.; Liu, J.; Peng, Y.; Zhang, H.; Zhang, S.; Wang, W.; Wheeler, A. R., Steering Micromotors via Reprogrammable Optoelectronic Paths. ACS nano 2023, 17 (6), 5894-5904.

23. Chen, X.; Xu, Y.; Zhou, C.; Lou, K.; Peng, Y.; Zhang, H.; Wang, W., Unraveling the physiochemical nature of colloidal motion waves among silver colloids. Science Advances 2022, 8 (21), eabn9130.

22. Chen, X.; Xu, Y.; Lou, K.; Peng, Y.; Zhou, C.; Zhang, H.; Wang, W., Programmable, spatiotemporal control of colloidal motion waves via structured light. ACS nano 2022, 16 (8), 12755-12766.

21. Zhou, C.; Suematsu, N. J.; Peng, Y.; Wang, Q.; Chen, X.; Gao, Y.; Wang, W., Coordinating an ensemble of chemical micromotors via spontaneous synchronization. ACS nano 2020, 14 (5), 5360-5370.

20. Chen, X.; Zhou, C.; Peng, Y.; Wang, Q.; Wang, W., Temporal light modulation of photochemically active, oscillating micromotors: Dark pulses, mode switching, and controlled clustering. ACS applied materials & interfaces 2020, 12 (10), 11843-11851.

19. Zhou, C.; Chen, X.; Han, Z.; Wang, W., Photochemically excited, pulsating Janus colloidal motors of tunable dynamics. ACS nano 2019, 13 (4), 4064-4072.

18. Zhang, L.; Xiao, Z.; Chen, X.; Chen, J.; Wang, W., Confined 1D propulsion of metallodielectric Janus micromotors on microelectrodes under alternating current electric fields. ACS nano 2019, 13 (8), 8842-8853.

17. Chen, X.; Zhou, C.; Wang, W., Colloidal motors 101: a beginner's guide to colloidal motor research. Chemistry–An Asian Journal 2019, 14 (14), 2388-2405.

16. Chen, X.; He, Y.; Fan, Y.; Zeng, G.; Zhang, L., Nature-inspired polyphenol chemistry to fabricate halloysite nanotubes decorated PVDF membrane for the removal of wastewater. Separation and Purification Technology 2019, 212, 326-336.

15. Ma, J.; He, Y.; Zeng, G.; Yang, X.; Chen, X.; Zhou, L.; Peng, L.; Sengupta, A., High‐flux PVDF membrane incorporated with β‐cyclodextrin modified halloysite nanotubes for dye rejection and Cu (II) removal from water. Polymers for Advanced Technologies 2018, 29 (11), 2704-2714.

14. Chen, X.; He, Y.; Fan, Y.; Yang, Q.; Yang, X.; Zeng, G.; Zhang, L., A smart engineering material with UV‐induced switchable wettability for controllable oil/water separation. Journal of Chemical Technology & Biotechnology 2018, 93 (2), 476-488.

13. Chen, X.; He, Y.; Fan, Y.; Yang, Q.; Yang, X.; Zeng, G., Facile preparation of a smart membrane with ammonia-responsive wettability transition for controllable oil/water separation. Journal of Materials Science 2018, 53, 516-527.

12. Zeng, G.; He, Y.; Ye, Z.; Yang, X.; Chen, X.; Ma, J.; Li, F., Novel halloysite nanotubes intercalated graphene oxide based composite membranes for multifunctional applications: oil/water separation and dyes removal. Industrial & Engineering Chemistry Research 2017, 56 (37), 10472-10481.

11. Yang, X.; He, Y.; Zeng, G.; Chen, X.; Shi, H.; Qing, D.; Li, F.; Chen, Q., Bio-inspired method for preparation of multiwall carbon nanotubes decorated superhydrophilic poly (vinylidene fluoride) membrane for oil/water emulsion separation. Chemical Engineering Journal 2017, 321, 245-256.

10. Yang, Q.; He, Y.; Fan, Y.; Li, F.; Chen, X., Exfoliation of the defect-rich MoS 2 nanosheets to obtain nanodots modified MoS 2 thin nanosheets for electrocatalytic hydrogen evolution. Journal of Materials Science: Materials in Electronics 2017, 28, 7413-7418.

9. Yang, Q.; He, Y.; Fan, Y.; Chen, X.; Li, Y., Efficient hydrogen evolution electrocatalysts from LixMoS2 nanoparticles on three-dimensional substrate. International Journal of Hydrogen Energy 2017, 42 (10), 6482-6489.

8. Li, H.; He, Y.; He, T.; Qing, D.; Luo, F.; Fan, Y.; Chen, X., Ni-W/BN (h) electrodeposited nanocomposite coating with functionally graded microstructure. Journal of Alloys and Compounds 2017, 704, 32-43.

7. Fan, Y.; He, Y.; Luo, P.; Chen, X.; Yu, Z.; Li, M., Facile way in building superhydrophobic zirconium surface for controllable water-oil separation. Materials Letters 2017, 188, 115-118.

6. Chen, X.; He, Y.; Fan, Y.; Yang, Q.; Zeng, G.; Shi, H., Facile fabrication of a robust superwetting three-dimensional (3D) nickel foam for oil/water separation. Journal of Materials Science 2017, 52, 2169-2179.

5 Chen, C.; He, Y.; Fan, Y.; Chen, X.; Yang, Q., Fabrication of superhydrophobic zirconium surface with a facile electrodeposition process. Surface Innovations 2017, 6 (1–2), 106-115.

4. Fan, Y.; He, Y.; Luo, P.; Chen, X.; Liu, B., A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel. Applied Surface Science 2016, 368, 435-442.

3. Chen, X.; He, Y.; Fan, Y.; Yang, Q.; Li, H., Preparation of multi-functional superhydrophobic lanthanum surface on carbon steel via facile electrochemical method. Applied Physics A 2016, 122, 1-10.

2. Chen, X.; Fan, Y.; Luo, C.; He, Y., EIS studies of the destruction behavior of a corrosion inhibitor film on carbon steel surface under hydrodynamic conditions. Russian Journal of Applied Chemistry 2016, 89, 1512-1519.

1. Fan, Y.; He, Y.; Luo, P.; Shi, T.; Chen, X., Pulse current electrodeposition and properties of Ni-W-GO composite coatings. Journal of The Electrochemical Society 2015, 163 (3), D68.