8804
当前位置: 首页   >  成果及论文
成果及论文

Na Batteries

Solid-State Na-Metal Batteries

  1. L. Xiang, D. Jiang, Y. Gao, C. Zhang*, X. Ren, L. Zhu, S. Gao*, X. Zhan*, Self-Formed Fluorinated Interphase with Fe Valence Gradient for Dendrite-Free Solid-State Sodium-Metal BatteriesAdv. Funct. Mater., 2023, 34, 2301670

  2. R. Li,  D. Jiang,  Peng Du, C. Yuan, X. Cui, Q. Tang, J. Zheng, Y. Li, K. Lu*,  Xiaodi Ren,  Shan Gao* and  X. Zhan*Negating Na‖Na3Zr2Si2PO12 interfacial resistance for dendrite-free and “Na-less” solid-state batteriesChemical Science, 2022, 13, 14132

  3. K. Lu, B. Li, X. Zhan, F. Xia, O.J. Dahunsi, S. Gao, D.M. Reed, V.L. Sprenkle, G. Li, Y. Cheng, Elastic NaxMoS2-carbon-BASE Triple Interface Direct Robust Solid-Solid Interface for All-Solid-State Na-S BatteriesNano Letters, 2020, 20, 6837

  4. X. Li, Q. Zhou, J. Wu, C. Yuan, K. Lu, X. Zhan*, L Zhu, An in Situ Formed Multifunctional Interphase with High Dendrite Tolerance for Long-Life Solid-State Sodium–Metal BatteriesACS Appl. Energy Mater., 2023, 6, 20, 10333

  5. W. Zhang, B. Song, M. WangT. Miao, X. Huang, E. Zhang, X. Zhan, Y. Yang, H. ZhangK. Lu, Confined Tandem Catalytic Quasi-Solid Sulfur Reversible Conversion for All-Solid-State Na-S BatteriesEnergy Environ. Sci., 2024, doi.org/10.1039/D4EE01750A

  6. X. Le, X. Li, J. Xiao, L. Zhu, X. Zhan*, Interface issues and challenges for NASICON-based solid-state sodium-metal batteries, Advanced Powder Materials2024, 3, 3, 100181

Molten Na-Metal Batteries

  1. X. Zhan, M.E. Bowden, X. Lu, J.F. Bonnet, T. Lemmon, D.M. Reed, V.L. Sprenkle, G. Li, A Low-Cost Durable Na-FeCl2 Battery with Ultrahigh Rate CapabilityAdv. Energy Mater., 2020, 10, 1903472
  2. X. Zhan, J.P. Sepulveda, X. Lu, J.F. Bonnet, N.L. Canfield, T. Lemmon, K. Jung, D.M. Reed, V.L. Sprenkle, G. Li, Elucidating the Role of Anionic Chemistry towards High-Rate Intermediate-Temperature Na-Metal Halide BatteriesEnergy Storage Mater., 2020, 24, 177
  3. X. Zhan, X. Lu, D.M. Reed, V.L. Sprenkle, G. Li, Emerging Soluble Organic Redox Materials for Next-Generation Grid Storage Applications (invited review), MRS Commun., 2020, 10, 2, 215
  4. X. Zhan, J.F. Bonnett, M.H. Engelhard, D.M. Reed, V. L. Sprenkle, G. Li, A High‐Performance Na–Al Battery Based on Reversible NaAlCl4 CatholyteAdv. Energy Mater., 2020, 10, 2001378
  5. M.M. Li, X. Lu, X. Zhan, M.H. Engelhard, J.F. Bonnett, E. Polikarpov, K. Jung, D.M. Reed, V.L. Sprenkle, G. Li, High Performance Sodium-Sulfur Batteries at Low Temperature Enabled by Superior Molten Na WettabilityChem. Commun., 2021, 57, 45
  6. X. Zhan, M.M. Li, J.M. Weller, V.L. Sprenkle, G. Li, Recent Progress in Cathode Materials for Sodium-Metal Halide BatteriesMaterials, 2020, 10, 2001378 (invited review)

Na-Ion Batteries & Others

  1. X. Zhan, M. Shirpour, Evolution of Solid/Aqueous Interface in Aqueous Sodium-Ion BatteriesChem. Commun., 2017, 53, 204

  2. X Chen, W Guo, R Li, P Du, X Zhan*, S Gao*, Structure, Electrochemical, and Transport Properties of Li-and F-Modified P2-Na2/3Ni1/3Mn2/3O2 Cathode Materials for Na-Ion BatteriesCoatings, 2023, 13, 3, 626  

  3. M. Shirpour, X. Zhan, M. Doeff, Sodium-Ion Batteries: “Beyond Lithium-Ion”, 2015 TechConnect World Innovation Conference and the National Innovation Summit, Washington, DC

  4. C. Yuan, R. Li,  X. Zhan*, V.L. Sprenkle, G. Li*, Stabilizing Metallic Na Anodes via Sodiophilicity Regulation: A ReviewMaterials, 202215, 4636

  5. M. Wang, H. Zhang, B. Song, W. Zhang, E. Zhang, X. Zhan, K. Lu, S. Lu, Sandwiched MnO2-Fe(CN)64–-Doped PPy-MnO2 Cathodes with Tunable Interlayer Spaces and Dual Redox Active Sites for Enhanced Na StorageInd. Eng. Chem. Res., 2024, 63, 21, 9600–9608


Li Batteries

Solid-State Li-Metal Batteries

  1. B. Xiong, Q. Nian, X. Zhao, Y. Chen, Y. Li, J. Jiang, S. Jiao, X. Zhan, X. Ren*, Transforming Interface Chemistry throughout Garnet Electrolyte for Dendrite-Free Solid-State BatteriesACS Energy Lett., 2023, 8, 1, 537–544
  2. Bing-Qing Xiong, Shunqiang Chen, Xuan Luo, Qingshun Nian, Xiaowen Zhan, Chengwei Wang, Xiaodi Ren, Plastic monolithic mixed-conducting interlayer for dendrite-free solid-state batteries, Adv. Sci., 2022, 9, 18, 2105924
  3. Y. Sun#, X. Zhan#, J. Hu, Y. Wang, S. Gao, Y. Shen, Y.T. Cheng, Improving Ionic Conductivity with Bimodal-Sized Li7La3Zr2O12 Fillers for Composite Polymer ElectrolytesACS Appl. Mater. Interfaces, 2019, 11, 13, 12467
  4. X. Zhan, Shen Lai, M. P. Gobet, S. G. Greenbaum, M. Shirpour, Defect Chemistry and Electrical Properties of Garnet-Type Li7La3Zr2O12Phys. Chem. Chem. Phys., 2018, 20, 1447
  5. X. Zhan*, M. Shirpour, Y.T. Cheng, Nonstoichiometry and Li-Ion Transport in Lithium Zirconate: the Role of Oxygen VacanciesJ.  Am. Ceram. Soc., 2018, 101, 4053
  6. X. ZhanDefect Chemistry and Transport Properties of Solid State Materials for Energy Storage Applications (Ph.D. dissertation)
  7.  L. Zhang, X. Zhan, Y.T. Cheng, and M. Shirpour, Charge Transport in Electronic-Ionic CompositesJ. Phys.l Chem. Lett., 2017, 8, 5385

Li-Ion Batteries

  1. X. Liu#X. Zhan#, Z.D. Hood#, W. Li, D.N. Leonard, A. Manthiram, M. Chi, Essential Effect of the Electrolyte on the Mechanical and Chemical Degradation of LiNi0.8Co0.15Al0.05O2 Cathodes upon Long-Term CyclingJ. Mater. Chem. A, 2021, 9, 2111
  2. X. Zhan*, S. Gao, Y.T. Cheng, Influence of Annealing Atmosphere on Li2ZrO3-Coated LiNi0.6Co0.2Mn0.2O2 and its High-Voltage Cycling PerformanceElectrochimica Acta, 2019, 300, 36
  3. S. Gao, X. Zhan, Y.T. Cheng, Structural, Electrochemical and Li-Ion Transport Properties of Zr-Modified LiNi0.8Co0.1Mn0.1O2 Positive Electrode Materials for Lithium-Ion BatteriesJ. Power Sources, 2019, 410, 45
  4. X. Liu, X. Zhan, Z.D. Hood, M. Chi, Probing the Origin of Microcracks in Layered Oxide Cathodes via Electron MicroscopyMicroscopy and Microanalysis, 2019, 25, S2, 2058 
  5. P. Du, C. Yuan, X. Cui, K. Zhang, Y. Yu, X. Ren, X. Zhan*, S. Gao*, Dendrite-suppressed and utilization-improved metallic Li anode enabled by lithiophilic nano-Pb decoration on carbon clothJ. Mater. Chem. A, 2022, 10(15), 8424     

  6. Y. Wang, D. Dang, D. Li, J. Hu, X. Zhan, Y.T. Cheng, Effects of Polymeric Binders on the Cracking Behavior of Silicon Composite Electrodes during Electrochemical CyclingJ. Power Sources, 2019, 438, 226938

  7. X. Zhan, M. Shirpour, F. Yang, A Thermodynamic Perspective for Formation of Solid Electrolyte Interphase in Lithium-Ion BatteriesElectrochimica Acta, 2015, 173, 736

  8. P. Du, Y. Pan, X. Gao, L. Zhu, X. Zhan*, S. Gao*, Stabilizing LiNi0.8Co0.1Mn0.1O2 cathodes with a mixed ionic-electronic conducting Li0.34La0.55MnO3-x multifunctional coating formed via in-situ conversion of surface Li residualJ. Alloys and Compd., 2024, 979, 173304

  9. X. Gao, P. Du, B. Cheng, X. Ren, X. Zhan*, L. Zhu*, Lithiophilic and Eco-Friendly Nano-Se Seeds Unlock Dendrite-Free and Anode-Free Li-Metal BatteriesACS Appl. Mater. Interfaces,2024, 16, 6, 7327–7337

  10. B. Cheng, P. Du, J. Xiao, X. Zhan*, L. Zhu*, Improving the Ionic Conductivity and Anode Interface Compatibility of LLZO/PVDF Composite Polymer Electrolytes by Compositional TuningACS Appl. Mater. Interfaces, 2024, 16, 24, 31648–31656   

Aqueous Zn Batteries and Others

  1. C. Yuan, C. Liu, X. Li, Y. Zhi, X. Zhan*, S. Gao*, A Facile Candle-Soot Nanoparticle Decoration Enables Dendrite-Free Zn Anodes for Long-Cycling Aqueous BatteriesACS Appl. Energy Mater., 2023, 6, 3, 1897

  2. C. Yuan, L. Yin, P. DuY. YuK. ZhangX. RenX. Zhan*S. Gao*Microgroove-patterned Zn metal anode enables ultra-stable and low-overpotential Zn deposition for long-cycling aqueous batteries Chem. Eng. J., 2022, 442, 136231

  3. J Xiao, C Yuan, L Xiang, X Li, L Zhu, X Zhan*, Design Strategies toward High‐Utilization Zinc Anodes for Practical Zinc‐Metal Batteries, Chemistry–A European Journal, 2024, 30, 21, 202304149  
  4. M.M. Li, X. Zhan, E. Polikarpov, N.L. Canfield, M.H. Engelhard, J.M. Weller, D.M. Reed, V.L. Sprenkel, G. Li, A freeze-thaw molten salt battery for seasonal storageCell Reports Physical Science, 2022, 3(4), 100821

  5. C. Yuan, J. Xiao, C. Liu, X. Zhan*, Elucidating Synergistic Mechanisms of Anion–Cation Electrolyte Additive for Ultra–Stable Zinc Metal AnodesJ. Mater. Chem. A, 2024, doi.org/10.1039/D4TA03414G       


Electrocatalytic CO2RR

  1. J. Gui, K. Zhang, X. Zhan, Y. Yu, T. Huang, Y. Li, J. Xue, X. Jin, S. Gao*, Y. Xie, Nitrogen-doped porous carbon nanosheets as a robust catalyst for tunable CO2 electroreduction to syngas, Sustainable Energy & Fuels, 2022, 6, 151

  2. Y. Li, K. Zhang, Y. Yu, X. Zhan, J. Gui, J. Xue, X. Jin, S. Gao*, Y. Xie, Pd homojunctions enable remarkable CO2 electroreduction, Chem. Commun., 2022, 58, 387

  3. H. Zhang, C. Xu, X. Zhan*, Y. Yu, K. Zhang, Q. Luo*, S. Gao*, J. Yang, Y. Xie*, Mechanistic insights into CO2 conversion chemistry of copper bis-(terpyridine) molecular electrocatalyst using accessible operando spectrochemistry, Nat. Commun., 2022, 13, 6029

  4. J. Xue, Y. Yu, C. Yang, K. Zhang, X. Zhan, J. Song, J. Gui, Y. Li, X. Jin, S. Gao, Y. Xie, Developing Atomically Thin Li1.81H0.19Ti2O5·2H2O Nanosheets for Selective Photocatalytic CO2 Reduction to COLangmuir, 2021, 38, 523

  5. W. Zhao, M. Ding, P. Yang, Q. Wang, K. Zhang*, X. Zhan, Y. Yu, Q. Luo*, S. Gao*, J. Yang, Y. Xie*, Pit-embellished low-valent metal active sites customize CO2 photoreduction to methanolEES Catalysis, 2023, 1, 36