10384
Current Page: Home   >  Publications
Publications

Representative Publications:


[1]    X.G. Yang, T. Liu, C.Y. Wang, Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. 

        Nature Energy 6, 176-185, (2021) (IF=60.8, Highlighted by CNBC, Wall Street Journal, Daily Mail, The Independent, etc.)


                           


[2]    X.G. Yang, T. Liu, S. Ge, E. Rountree, C.Y. Wang, Challenges and key requirements of batteries for electric vertical takeoff

        and landing aircraft, Joule 5, 1644-1659, (2021). (IF=41.2, 封面论文)


                               


[3]    X.G. Yang, T. Liu, Y. Gao, S. Ge, Y. Leng, D. Wang, C.Y. Wang, Asymmetric Temperature Modulation for Extreme Fast Charging

        of Lithium-Ion Batteries. Joule 3, 3002-3019, (2019) (IF=41.2, ESI highly cited paperhighlighted by Science, Nature, 

       USA Today, Forbes, The Guardian, Daily Mail, The Independent, AFP, Bild, etc.) 


                                


[4]    X.G. Yang, G. Zhang, S. Ge, C.Y. Wang, Fast charging of lithium-ion batteries at all temperatures. 

        Proceedings of National Academy of Sciences 115, 7266-7271 (2018)


                                


[5]    X.G. Yang, Y. Leng, G. Zhang, S. Ge, C.Y. Wang, Modeling of lithium plating induced aging of lithium-ion batteries: Transition 

        from linear to nonlinear aging. J. Power Sources 360, 28-40 (2017). (ESI highly cited paper)

              

                            


At Penn State University (Li-ion batteries):

[6]  T. Liu, X.G. Yang, S. Ge, Y. Leng, C.Y. Wang, Ultrafast charging of energy-dense lithium-ion batteries for urban air 

      mobility. eTransportation 7, 100103 (2021). 

[7]  Z. Song, X.G. Yang*, N. Yang, F.P. Delgado, H. Hofmann, J. Sun, A study of cell-to-cell variation of capacity in parallel-

      connected lithium-ion battery cells. eTransportation 7, 100091 (2021).

[8]   X.G. Yang, S. Ge, N. Wu, Y. Mao, F. Sun, C.Y. Wang, All-Climate Battery Technology for Electric Vehicles: Inching Closer to 

       the   Mainstream Adoption of Automated Driving. IEEE Electrification Magazine, 7, 12-21 (2019).

[9]   X.G. Yang, C.Y. Wang, Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries. 

       J. Power Sources 402, 489-498 (2018).

[10] X.G. Yang, S. Ge, T. Liu, Y. Leng, C.Y. Wang, A look into the voltage plateau signal for detection and quantification of lithium

       plating in lithium-ion cells. J. Power Sources 395, 251-261 (2018).

[11]  X.G. Yang, T. Liu, C.Y. Wang, Innovative heating of large-size automotive Li-ion cells. J. Power Sources 342, 598-604 (2017).

[12]  G. Zhang, S. Ge, X.G. Yang, Y. Leng, D. Marple, C.Y. Wang, Rapid restoration of electric vehicle battery performance while 

        driving at cold temperatures. J. Power Sources 371, 35-40 (2017).

[13]  Y. Leng, S. Ge, D. Marple, X.G. Yang, C. Bauer, P. Lamp, C.Y. Wang, Electrochemical Cycle-Life Characterization of High

        Energy Lithium-Ion Cells with Thick Li(Ni0.6Mn0.2Co0.2)O2 and Graphite Electrodes. 

        J. Electrochem. Soc. 164, A1037-A1049 (2017).

[14]   X.G. Yang, C. Bauer, C.Y. Wang, Sinusoidal current and stress evolutions in lithium-ion batteries. 

       J. Power Sources 327, 414-422 (2016).

[15]  G. Zhang, S. Ge, T. Xu, X.G. Yang, H. Tian, C.Y. Wang, Rapid self-heating and internal temperature sensing of lithium-ion 

        batteries at low temperatures. Electrochim. Acta 218, 149-155 (2016).

[16]   X.G. Yang, G. Zhang, C.Y. Wang, Computational design and refinement of self-heating lithium ion batteries. 

         J. Power Sources 328, 203-211 (2016).

[17]  C.Y. Wang, T. Xu, S. Ge, G. Zhang, X.G. Yang, J. Yan, A Fast Rechargeable Lithium-Ion Battery at Subfreezing 

        Temperatures. J. Electrochem. Soc. 163, A1944-A1950 (2016).

[18]  C.Y. Wang, G. Zhang, S. Ge, T. Xu, X.G. Yang, Y. Leng, Lithium-ion battery structure that self-heats at low

        temperatures. Nature 529, 515-518 (2016).

At Shanghai Jiao Tong University (fuel cells and flow batteries):

[19]   X.G. Yang, Q. Ye, P. Cheng, T. S. Zhao, Effects of the electric field on ion crossover in vanadium redox flow batteries. 

         Applied Energy 145, 306-319 (2015).

[20]   X.G. Yang, Q. Ye, P. Cheng, Oxygen starvation induced cell potential decline and corresponding operating state transitions of 

         a direct methanol fuel cell in galvanostatic regime. Electrochim. Acta 117, 179-191 (2014).

[21]   Q. Ye, X.G. Yang, P. Cheng, Modeling of spontaneous hydrogen evolution in a direct methanol fuel cell. 

         Electrochim. Acta 69, 230-238 (2012).

[22]   X.G. Yang, Q. Ye, P. Cheng, Hydrogen pumping effect induced by fuel starvation in a single cell of a PEM fuel cell stack 

         at galvanostatic operation. Int. J. Hydrogen Energy 37, 14439-14453 (2012).

[23]   X.G. Yang, Q. Ye, P. Cheng, In-plane transport effects on hydrogen depletion and carbon corrosion induced by anode

         flooding in proton exchange membrane fuel cells. Int. J. Heat Mass Trans., 4754-4765 (2012).

[24]   X.G. Yang, Q. Ye, P. Cheng, Matching of water and temperature fields in proton exchange membrane fuel cells with 

         non-uniform distributions. Int. J. Hydrogen Energy 36, 12524-12537 (2011).