Patents
Chinese Invention Patents:55
American Invention Patents: 5
PCT/International Invention Patents: 4
Papers
“*”Corresponding author ; “#”Co-first author
2024
Materials and chemistry design for low-temperature all-solid-state batteries
P. Lu, Z. Zhou, Z. Xiao, J. Lu, J. Zhang, G. Hu, W. Yan, S. Xia, S. Zhang, Z. Wang, H. Li, C. Wang*, F. Wu*, X. Sun*
Joule(IF=46.048)2024, 8,1-23.
https://doi.org/10.1016/j.joule.2024.01.027
In-situ formed Li3N networks by soft carbon-Si3N4 for superior all-solid-state lithium-metal batteries
Z. Wang, Z. Mu, T. Ma, W. Yan, D. Wu, Y. Li, M. Yang, J. Peng, Y. Xia, S. Shi, L. Chen, H. Li, F. Wu*
Advanced Energy Materials(IF=29.698), 2024,14,26,2400003.
10.1002/aenm.202400003
High-Areal-Capacity and Long-Cycle-Life All-Solid-State Lithium-Metal Battery By Mixed-Conduction Interface Layer
M. Yang, Z. Wang, T. Ma, D. Wu, P. Lu, J. Peng, Q. gao, X. Zhu, Z. Jiang, L. Chen, H. Li, F. Wu*
Advanced Energy Materials(IF=29.698), 2024,2303229
DOI:10.1002/aenm.202303229
Superionic Conductivity Invoked by Enhanced Correlation Migration in Lithium Halides Solid Electrolytes
R. Li, P. Lu, X. Liang, L. Liu, M. Avdeev, Z. Deng, S. Li, K. Xu, J. Feng, R. Si, F. Wu*, Z. Zhang*, Y. Hu*
ACS Energy Letters (IF=22) 2024, 9, 1043–1052
https://doi.org/10.1021/acsenergylett.3c02496
Moisture-stable chalcogenide solid electrolytes in Li2BMQ4 (B = Ca, Sr and Ba; M = Si, Ge and Sn; Q = O, S and Se) systems
H. Mao, X. Zhu, G. Li, J. Pang, J. Hao, L. Wang, H. Yu, Y. Shi, F. Wu*, S. Pan*, R. Xiao*, H. Li*, L. Chen
ACS Energy Letters (IF=22) 2024,9, 4827-4834.
https://doi.org/10.1021/acsenergylett.4c01970
Low-pressure Dendrite-free Sulfide Solid-state Battery
D. Wu, J. Peng, Z.Jiang, L. Zhu, Y.Wu, C.Xu, Z.Wang, M.Yang, H. Li, L. Chen, F. Wu*
Energy Storage Materials (IF=20.831) 2024, 72 103749
https://doi.org/10.1016/j.ensm.2024.103749
Rate-Limiting Mechanism of All-Solid-State Battery Unravelled by Low-Temperature Test-Analysis Flow
P. Lu, Y. Wu, D. Wu, F. Song, T. Ma, W. Yan, X. Zhu, F. Guo, J. Lu, J. Peng, L. Chen, H. Li, F. Wu*
Energy Storage Materials (IF=20.831) 2024, 67,103316.
https://doi.org/10.1016/j.ensm.2024.103316
High-Capacity, Long-Life sulfide all-solid-state batteries with single-crystal Ni-rich layered oxide cathodes
H. Liu, Y. Wang, L. Chen, H. Li, F. Wu*
Advanced Functional Materials(IF=19.924), 2024, 2315701.
https://doi.org/10.1002/adfm.202315701
Superior Low-Temperature All-Solid-State Battery Enabled by High-Ionic-Conductivity and Low-Energy-Barrier Interface
P. Lu, S. Gong, C. Wang, Z. Yu, Y. Huang, T. Ma, J. Lian, Z. Jiang, L. Chen, H. Li, F. Wu*
ACS Nano(IF=18.9)2024, 2024, 18, 10, 7334–7345
10.1021/acsnano.3c07023
Dendrite-Free All-Solid-State Lithium-Metal Battery By In-situ Phase Transformation of Soft Carbon-Li3N Interface Layer
M. Yang, K. Yang, Y. Wu, Z. Wang, T. Ma, D. Wu, L. Yang, J. Xu, P. Lu, J. Peng, Z. Jiang, X. Zhu, Q. Gao, F. Xu, L. Chen, H. Li, F. Wu*
ACS Nano(IF=18.9)2024, 18, 26, 16842–16852
https://doi.org/10.1021/acsnano.4c02509
In-situ Cathode Coating For All-solid-state Batteries By Freeze-Drying Technology
T. Ma, D. Wu, Z. Wang, P. Lu, M. Yang, J. Peng, L. Chen, H. Li, F. Wu*
Nano Energy (IF=17.881), 2024, 109522.
Industrialization Challenges For All Solid State Battery
Y. Wu, L. Chen, H. Li, F. Wu*
eTransportation (IF=13.661), 2024,100371
https://doi.org/10.1016/j.etran.2024.100371
2023
Hard-Carbon-Stabilized Li-Si Anodes for high-performance All-Solid-State Li-ion Batteries
W. Yan, Z Mu, Z. Wang, Y. Huang, D. Wu, P. Lu, J. Lu, J. Xu, Y. Wu, T. Ma, M. Yang, X. Zhu, Y. Xia, S. Shi, L. Chen, H. Li, F. Wu*
Nature Energy (IF=67.439) 2023, 8, 800–813
https://www.nature.com/articles/s41560-023-01279-8
Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes
P. Lu, Y. Xia, G. Sun, D. Wu, S. Wu, W. Yan, X. Zhu, J. Lu, Q. Niu, S. Shi, Z. Sha, L. Chen, H. Li, Fan Wu*
Nature Communications 2023,14,4077.
10.1038/s41467-023-39686-w
Solid-State Lithium Batteries-From Fundamental Research to Industrial Progress
D. Wu, L. Chen, H. Li, Fan Wu*
Progress in Materials Science (IF=48.165), 2023, 139,101182.
https://authors.elsevier.com/sd/article/S0079-6425(23)00114-7
High-Areal-Capacity and Long-Cycle-Life All-Solid-State Battery Enabled By Freeze Drying Technology
T. Ma, Z. Wang, D. Wu, P. Lu, X. Zhu, M. Yang, J. Peng, L. Chen, H. Li, F. Wu*
Energy & Environmental Science (IF=40) 2023, 16, 2142 - 2152.
https://DOI: 10.1039/d3ee00420a
Soft Carbon-Thiourea With Fast Bulk Diffusion Kinetics For Solid-State Lithium Metal Batteries
Z. Wang, Z. Mu, T. Ma, W. Yan, D. Wu, M. Yang, J. Peng, Y. Xia, S. Shi, L. Chen, H. Li, F. Wu*
Advanced Materials(IF=32.086), 2023, 36, 8,2310395.
Thermal Stability of Sulfide Solid Electrolyte with Lithium metal
Y. Wu, J. Xu, P. Lu, J. Lu, L. Gan, S. Wang, R. Xiao, H. Li, L. Chen, F. Wu*
Advanced Energy Materials(IF=29.698), 2023,2301336.
High-Capacity, Long-Life Iron Fluoride All-Solid-State Lithium Battery with Sulfide Solid Electrolyte
J. Peng ,X. Wang, L. Chen, H. Li, F. Wu*
Advanced Energy Materials(IF=29.698), 2023,2300706.
https://onlinelibrary.wiley.com/doi/10.1002/aenm.202300706
Superior Lithium-Metal All-Solid-State Batteries with In-situ formed Li3N-LiF-rich Interphase
Q. Gao, D. Wu, Z. Wang, P. Lu, X. Zhu, T. Ma, M. Yang, L. Chen, H. Li, & F. Wu*
Energy Storage Materials (IF=20.831) 2023, 63, 103007.
https://doi.org/10.1016/j.ensm.2023.103007
High-Safety, Wide-Temperature-Range, Low-External-Pressure and Dendrite-Free Lithium Battery with Sulfide Solid Electrolyte.
J. Peng, D. Wu, P. Lu, Z. Wang, Y. Du, Y. Wu, Y. Wu, W. Yan, J. Wang, H. Li, L. Chen & F. Wu*
Energy Storage Materials (IF=20.831) 2023, 54: 430-439.
https://doi.org/10.1016/j.ensm.2022.10.057
Y. Wang, Z. Shadike, W. Fitzhugh, F. Wu, S. Lee, J. Lee, X. Chen, Y. Long, E. Hu, X. Li*
Energy Storage Materials (IF=20.831), 2023, 55, 587-596
Dual-function modifications for high-stability Li-Rich cathode towards Sulfide All-Solid-State Batteries
Y. Wang, D. Wu, P. Chen, P. Lu, X. Wang, L. Chen, H. Li, F. Wu*
Advanced Functional Materials(IF=19.924), 2023, 2309822
Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode
J. Peng, D. Wu, Z. Jiang, P. Lu, Z. Wang, T. Ma, M. Yang, H. Li, L. Chen, F. Wu*
ACS Nano(IF=18.9)2023, 17, 13, 12706–12722
https://doi.org/10.1021/acsnano.3c03532
Enhanced Electron Cloud Through π-π Interaction In Charge-Transfer Complexes for All-Solid-State Lithium Batteries.
F. Song, Z. Wang, T. Ma, L. Chen, H. Li, F. Wu*.
Nano Energy (IF=17.881), 2023, 117,108893.
https://doi.org/10.1016/j.nanoen.2023.108893
Dendrite-free lithium-metal all-solid-state batteries by solid-phase passivation.
Q. Gao, D. Wu, X. Zhu, P. Lu, T. Ma, M. Yang, L. Chen, H. Li, F. Wu*.
Nano Energy (IF=17.881), 2023, 117,108922.
https://doi.org/10.1016/j.nanoen.2023.108922
Anode Interfacial Issues in Solid-State Li Batteries: Mechanistic Understanding and Mitigating Strategies
J. Wang, L. Chen, H. Li, F. Wu*
Energy & Environmental Materials (IF=15.122),2023, 0, e12613
https://doi.org/10.1002/eem2.12613
Fast Charge Storage Kinetics by Surface Engineering for Ni-Rich Layered Oxide Cathode
J. Wang, Z. Zhang, W. He, Z. Wang, S. Weng, Q. Li, X. Wang, S. Barg, L. Chen, H. Li, F. Wu*
Journal of Materials Chemistry A (IF=14.511), 2023, 11, 10239 - 10253(2023 JMCA Hot papers)
High-Capacity Sulfide All-Solid-State Lithium battery with Conversion-type Iron Fluoride Cathode
X. Wang, Z. Wang, L. Chen, H. Li, F. Wu*
Journal of Materials Chemistry A (IF=14.511), 2023, 11, 4142-4154.
http://doi: 10.1039/D2TA09109G
Experimental Corroboration of Lithium Orthothioborate Superionic Conductor by Systematic Elemental Manipulation.
X. Zhu, P. Lu, D. Wu, Q. Gao, T. Ma, M. Yang, L. Chen, H. Li, F. Wu*
Nano Letters (IF=10.8), 2023, in press.
https://doi.org/10.1021/acs.nanolett.3c02861
In-situ CNT-loaded Organic Cathodes for Sulfide All-solid-state Li Metal Batteries
F. Song, Z. Wang, G. Sun, T. Ma, D. Wu, L. Chen, H. Li, F. Wu*
eTransportation (IF=13.661), 2023, 100261, 2590-1168
Toward Better Batteries: Solid-State Battery Roadmap 2035+
D. Wu, F. Wu*
eTransportation (IF=13.661), 2023, 16, 10024.
https://www.sciencedirect.com/science/article/abs/pii/S2590116822000698
New Technologies and New Applications of Advanced Batteries
D. Wu, H. Li, B. Kang, L. Lu, X. Sun, F. Wu*.
Applied Physics Letters, 2023,123, 000000
doi: 10.1063/5.0164527
Long-life High-capacity Lithium Battery with Liquid Organic Cathode and Sulfide Solid Electrolyte
J. Peng, D. Wu, H. Li, L. Chen & F. Wu*
Battery Energy, 2023, 20220059.
doi:10.1002/bte2.20220059
Application of liquid metal electrodes in electrochemical energy storage
J. Peng, H. Li, L. Chen & F. Wu*
Precision Chemistry, 2023, in press.
DOI: 10.1021/prechem.3c00030
2022
Solid state ionics - selected topics and new directions
F. Wu, L. Liu, S. Wang, J. Xu, P. Lu, W. Yan, J. Peng, D. Wu, H. Li*
Progress in Materials Science (IF=48.165), 2022, 126,100921.
https://doi.org/10.1016/j.pmatsci.2022.100921
Progress in Solvent-Free Dry-Film Technology for Batteries and Supercapacitors
Y. Li, Y. Wu, Z. Wang, J. Xu, T. Ma, L. Chen, H. Li*, F. Wu*
Materials Today (IF=31.041), 2022, 55,92-109.
https://doi.org/10.1016/j.mattod.2022.04.008
Long-Life Lithium-Metal All-Solid-State Batteries and Stable Li Plating Enabled by In-situ Formation of Li3PS4 in SEI Layer
J. Xu, J. Li, Y. Li, M. Yang, L. Chen, H. Li, F. Wu*
Advanced Materials(IF=32.086), 2022, 2203281.
https://DOI:10.1002/adma.202203281
Long-life Sulfide All-solid-state Battery Enabled by Substrate-Modulated Dry-Process Binder
Y. Li, Y. Wu, T. Ma, Z. Wang, Q. Gao, J. Xu, L. Chen, H. Li, F. Wu*
Advanced Energy Materials(IF=29.698), 2022, 01732.
DOI: 10.1002/aenm.202201732
Air Stability of Sulfide Solid-state Batteries and Electrolytes
P. Lu#, D. Wu#, L. Chen, H. Li*, F. Wu*
Electrochemical Energy Reviews (IF=32.804), 2022, 5:3.
https://doi.org/10.1007/s41918-022-00149-3
Improving Thermal Stability of Sulfide Solid Electrolytes: An Intrinsic Theoretical Paradigm
S. Wang, Y. Wu, H. Li, L. Chen, F. Wu*
Infomat(IF=25.405)2022, 212316.
Wide-temperature, Long-cycling, and High-loading Pyrite All-solid-state Batteries Enabled by Argyrodite Thioarsenate Superionic Conductor
P. Lu, Y. Xia, G. Sun, S. Shi, Z. Sha, L. Chen, H. Li, F. Wu*
Advanced Functional Materials(IF=19.924), 2022, 2211211.
https://doi.org/10.1002/adfm.202211211
Thermal Stability between Sulfide Solid Electrolytes and Oxide Cathode
S. Wang, Y. Wu, T. Ma, L. Chen, H. Li, F. Wu*
ACS Nano(IF=18.9)2022, 16, 10, 16158–16176.
Interfacial and Cycle Stability of Sulfide All-Solid-State Batteries with Ni-Rich Layered Oxide Cathodes
J. Wang, Z. Zhang, J. Han, X. Wang, L. Chen, H. Li, F. Wu*
Nano Energy (IF=19.069), 2022, 107528.
Doping Strategy and Mechanism for Oxide and Sulfide Solid Electrolytes with High Ionic Conductivity
Y. Wang, Y. Wu, Z. Wang, L. Chen, H. Li*, F. Wu*
Journal of Materials Chemistry A (IF=14.511), 2022, 10, 4517 - 4532
https://doi.org/10.1039/D1TA10966A
Air/water Stability Problems and Solutions for Lithium Batteries
M. Yang, L. Chen, H. Li*, F. Wu*
Energy Materials Advances, 2022, 9842651.
https://spj.sciencemag.org/journals/energymatadv/2022/9842651/
Recent Progress of Solid-Sstate Lithium Batteries in China.
D. Wu, L. Chen, H. Li, F. Wu*.
Applied Physics Letters, 2022,121, 120502.
https://doi.org/10.1063/5.0117248
Stable Ni-rich layered oxide cathode for sulfide all-solid-state lithium battery
Y. Wang, Z. Wang, D. Wu, Q. Niu, P. Lu, T. Ma, Y. Su, L. Chen, H. Li, F. Wu*
eScience,2022, 2,5,537-545.
Stable Ni-rich layered oxide cathode for sulfide all-solid-state lithium battery - ScienceDirect
Progress in Lithium Thioborate Superionic Conductors
X. Zhu, Z. Zhang, L. Chen, H. Li. F. Wu*
Journal of Materials Research (invited paper), 2022, accepted.
https://doi.org/10.1557/s43578-022-00592-4
Liquid-phase Synthesis of Li2S and Li3PS4 with Lithium-based Organic Solutions
J. Xu, Q. Wang, W. Yan, L. Chen, H. Li. F. Wu*
Chinese Physics B, 2022, 31,098203.
Liquid-phase Synthesis of Li2S and Li3PS4 with Lithium-based Organic Solutions - IOPscience
2021
Superior all-solid-state batteries enabled by gas-phase synthesized sulfide electrolyte with ultra-high moisture stability and ionic conductivity.
P. Lu, L. Liu, S. Wang, J. Xu, J. Peng, W. Yan, Q. Wang, H. Li, L. Chen, F. Wu*.
Advanced Materials(IF=32.086), 2021, 2100921.
https://doi.org/10.1002/adma.202100921
Water-Stable Sulfide Solid Electrolyte Membranes Directly Applicable in All-Solid-State Batteries Enabled by Superhydrophobic Li+-conducting Protection Layer
J. Xu, Y. Li, P. Lu, W. Yan, H. Li, L. Chen, F. Wu*.
Advanced Energy Materials(IF=29.698), 2021, 2102348.
High Current Density and Long Cycle Life Enabled by Sulfide Solid Electrolyte and Dendrite-Free Liquid Lithium Anode
J. Peng, D. Wu, F. Song, S. Wang, Q. Niu, J. Xu, P. Lu, H. Li, L. Chen, F. Wu*.
Advanced Functional Materials(IF=19.924), 2021, 2105776.
5V-Class Sulfurized Spinel Cathode Stable in Sulfide All-Solid-State Batteries
Y. Wang, Y. Lv, Y. Su, L. Chen, H. Li, F. Wu*.
Nano Energy (IF=19.069), 2021, 90,106589.
https://doi.org/10.1016/j.nanoen.2021.106589
Progress in Thermal Stability of All-Solid-State-Li-Ion-Batteries
Y. Wu#, S. Wang#, H. Li, L. Chen, F. Wu*.
Infomat(IF=25.405), 2021, 1-27 (Cover Image)
https://doi.org/10.1002/inf2.12224
Application of Si-based Anodes In Sulfide Solid-State Batteries.
W. Yan, F. Wu*, H. Li, L. Chen.
Energy Storage Science and Technology, 2021, 10(3): 821-835.
Application of Si-based anodes in sulfide solid-state batteries (energystorage-journal.com)
Before 2021
Advanced sulfide solid electrolyte by core-shell structural design
Nature Communications, (2018) 9:4037.
Advanced sulfide solid electrolyte by core-shell structural design | Nature Communications
A high‐throughput search for functionally stable interfaces in sulfide solid‐state lithium ion conductors
Advanced Energy Materials, 1900807.
Strain‐stabilized ceramic‐sulfide electrolytes.
Small, 1901470.
Strain‐Stabilized Ceramic‐Sulfide Electrolytes - Fitzhugh - 2019 - Small - Wiley Online Library
Practical evaluation of energy densities for sulfide solid-state batteries
eTransportation, 2019, 1: 100010.
Practical evaluation of energy densities for sulfide solid-state batteries - ScienceDirect
Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes and all-solid-state batteries
Materials Today Nano, 2019: 100048.
Advances in Electrochemical Stability of Sulfide Solid-state Electrolyte
Liu, Lilu, Fan Wu, Hong Li, and Liquan Chen.
Journal of the Chinese Ceramic Society 2019, 47: 1367–1385.
In-situ synthesis and defect evolution of single-crystal piezoelectric nanoparticles
Nano Energy 28 (2016) 195–205.
Nano Energy, 2015, 13, 735-756.
Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery
Nano Energy, 2015, 11, 196-210.
Current Opinion in Solid State and Materials Science, 2014, 18 (5), 279-285.
Materials Research letters, 2013, 2 (2), 63-69.
Nanoscale electrical properties of epitaxial Cu3Ge film
Scientific Reports, 2016, 6, 28818.
Scientific Reports, 2016, 6, 22513.
Advanced Functional Materials, 2018, 1803896
Defects in thin-film heterostructured materials (invited review)
A combination of theory and experiment achieving rational design of electrocatalysts for water reduction on hierarchically porous CoS2 microsphere.