3867
当前位置: 首页   >  成果及论文
成果及论文

[39] Chen G ,  Hu Z ,  Zhang J , et al. A Template-engaged, Self-doped Strategy to N-doped Hollow Carbon Nanoboxes for Zinc-ion Hybrid Supercapacitors[J]. ChemElectroChem, 2021.

[38] Sw A ,  Zh B ,  Zp B , et al. Mohr's salt assisted KOH activation strategy to customize S-doped hierarchical carbon frameworks enabling satisfactory rate performance of supercapacitors[J]. Journal of Alloys and Compounds, 2021.

[37] Wang D ,  Pan Z ,  Cheng G , et al. Glycerol derived mesopore-enriched hierarchically carbon nanosheets as the cathode for ultrafast zinc ion hybrid supercapacitor applications[J]. Electrochimica Acta, 2021, 379(1):138170.

[36] Wang D ,  Chen G ,  Pan Z . A robust magnesiothermic reduction combined self-activation strategy towards highly-curved carbon nanosheets for advanced zinc-ion hybrid supercapacitors applications[J]. Nanotechnology, 2021, 32(18).

[35] Chen G ,  Hu Z ,  Pan Z , et al. Design of honeycomb-like hierarchically porous carbons with engineered mesoporosity for aqueous zinc-ion hybrid supercapacitors applications[J]. The Journal of Energy Storage, 2021, 38(1):102534.

[34] Liang H ,  Lu Z ,  D  Wang. A facile Zn involved self-sacrificing template-assisted strategy towards porous carbon frameworks for aqueous supercapacitors with high ions diffusion coefficient[J]. Diamond and Related Materials, 2020, 103(1):107696.

[33] Wang D ,  Lu Z ,  Xu L . Microstructure design of porous nanocarbons for ultrahigh-energy and power density supercapacitors in ionic liquid electrolyte[J]. Journal of Materials Science, 2020, 55(2).

[32] Wang D ,  Wang S ,  Lu Z . Soped 3D porous carbons derived from potassium thioacetate activation strategy for zincon hybrid supercapacitor applications[J]. International Journal of Energy Research, 2020, 45(2).

[31] Wang D ,  Pan Z ,  Lu Z . From starch to porous carbon nanosheets: Promising cathodes for high-performance aqueous Zn-ion hybrid supercapacitors[J]. Microporous and Mesoporous Materials, 2020, 306:110445.

[30] Pan Z ,  Lu Z ,  Xu L , et al. A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications[J]. Applied Surface Science, 2020, 510:145384.

[29] Liang H ,  Sun T ,  Xu L , et al. A universal strategy towards porous carbons with ultrahigh specific surface area for high-performance symmetric supercapacitor applications[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(6).

[28] Wang D ,  Xu L ,  Nai J , et al. A versatile Co-Activation strategy towards porous carbon nanosheets for high performance ionic liquid based supercapacitor applications[J]. Journal of Alloys & Compounds, 2019, 786:109-117.

[27] Wang D ,  J  Nai,  Hua L , et al. A robust strategy for the general synthesis of hierarchical carbons constructed by nanosheets and their application in high performance supercapacitor in ionic liquid electrolyte - ScienceDirect[J]. Carbon, 2019, 141:40-49.

[26] Wang D ,  Nai J ,  Xu L , et al. A Potassium Formate Activation Strategy for the Synthesis of Ultrathin Graphene-like Porous Carbon Nanosheets for Advanced Supercapacitor Applications[J]. ACS Sustainable Chemistry & Engineering, 2019, XXXX(XXX).

[25] Wang D ,  Nai J ,  Xu L , et al. Gunpowder chemistry-assisted exfoliation approach for the synthesis of porous carbon nanosheets for high-performance ionic liquid based supercapacitors[J]. The Journal of Energy Storage, 2019, 24(AUG.):100764.

[24] Dewei, Wang, et al. Unusual carbon nanomesh constructed by interconnected carbon nanocages for ionic liquid-based supercapacitor with superior rate capability[J]. Chemical Engineering Journal, 2018.

[23] Wang D ,  Xu L ,  Nai J , et al. Morphology-controllable synthesis of nanocarbons and their application in advanced symmetric supercapacitor in ionic liquid electrolyte[J]. Applied Surface ence, 2018, 473(APR.15):1014-1023.

[22] Wang D ,  Xu L ,  Wang Y , et al. Rational synthesis of porous carbon nanocages and their potential application in high rate supercapacitors[J]. Journal of Electroanalytical Chemistry, 2018, 815:166-174.

[21] Dewei Wang,  Wang Y ,  Xu W , et al. Tunable synthesis of nanocarbon architectures and their application in advanced symmetric supercapacitors[J]. Applied Surface Science, 2018.

[20]Geng, Guihong, Jiao, et al. Unconventional mesopore carbon nanomesh prepared through explosione-assisted activation approach: A robust electrode material for ultrafast organic electrolyte supercapacitors[J]. Carbon An International Journal Sponsored by the American Carbon Society, 2017.

[19] Wang D ,  Liu S ,  Lei J , et al. A smart bottom-up strategy for the fabrication of porous carbon nanosheets containing rGO for high-rate supercapacitors in organic electrolyte[J]. Electrochimica Acta, 2017, 252.

[18] Wang D ,  Liu S ,  Fang G , et al. From Trash to Treasure: Direct Transformation of Onion Husks into Three-Dimensional Interconnected Porous Carbon Frameworks for High-Performance Supercapacitors in Organic Electrolyte[J]. Electrochimica Acta, 2016:405-411.

[17] Wang D ,  Fang G ,  Qian Z , et al. Construction of hierarchical porous graphene–carbon nanotubes hybrid with high surface area for high performance supercapacitor applications[J]. Journal of Solid State Electrochemistry, 2016, 21(2):1-9.

[16] D  Wang,  Fang G ,  Xue T , et al. A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications[J]. Journal of Power Sources, 2016, 307(Mar.1):401-409.

[15] Wang D ,  Fang G ,  Geng G , et al. Unique porous carbon constructed by highly interconnected naonowalls for high-performance supercapacitor in organic electrolyte[J]. Materials Letters, 2016, 189(FEB.15):50-53.

[14] Wang D ,  Min Y ,  Yu Y . Facile synthesis of wheat bran-derived honeycomb-like hierarchical carbon for advanced symmetric supercapacitor applications[J]. Journal of Solid State Electrochemistry, 2015, 19(2):577-584.

[13] Wang D ,  Min Y ,  Yu Y , et al. A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors[J]. Journal of Colloid & Interface Science, 2014, 417:270-277.

[12] Wang D ,  Min Y ,  Yu Y , et al. Laser induced self-propagating reduction and exfoliation of graphite oxide as an electrode material for supercapacitors[J]. Electrochimica Acta, 2014, 141:271-278.

[11] Wang D ,  Wang Q ,  Wang T . Controlled synthesis of porous nickel oxide nanostructures and their electrochemical capacitive behaviors[J]. Ionics, 2013, 19(3):559-570.

[10]Dewei, Wang, Yuqi, et al. Facile Synthesis of Porous Mn3O4 Nanocrystal–Graphene Nanocomposites for Electrochemical Supercapacitors[J]. European Journal of Inorganic Chemistry, 2012, 2012(4):628-635.

[9] Wang D ,  Li Y ,  Wang Q , et al. Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors[J]. Journal of Solid State Electrochemistry, 2012, 16(6):2095-2102.

[8] Wang Q ,  Wang D ,  Li Y , et al. Superparamagnetic magnetite nanocrystals-graphene oxide nanocomposites: facile synthesis and their enhanced electric double-layer capacitor performance.[J]. Journal of Nanoscience & Nanotechnology, 2012, 12(6):4583.

[7] Wang D ,  Wu M ,  Wang Q , et al. Controlled growth of uniform nanoflakes-built pyrite FeS2 microspheres and their electrochemical properties[J]. Ionics, 2011, 17(2):163-167.

[6] A Q W ,  C D W A ,  C M W B , et al. Porous SnO 2 nanoflakes with loose-packed structure: Morphology conserved transformation from SnS 2 precursor and application in lithium ion batteries and gas sensors[J]. Journal of Physics and Chemistry of Solids, 2011, 72( 6):630-636.

[5] Wang D ,  Wang Q ,  Wang T . Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors.[J]. Inorganic Chemistry, 2011, 50(14):6482-92.

[4] Wang D ,  Wang Q ,  Wang T . Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes[J]. Nanotechnology, 2011, 22(13):135604.

[3] Wang Q ,  Wang D ,  Wang T . Shape-controlled Synthesis of Porous SnO2 Nanostructures via Morphologically Conserved Transformation from SnC2O4 Precursor Approach[J]. Nano-Micro Letters, 2011, 3(1):34-42.

[2] Wang D ,  Wang Q ,  Wang T . Shape controlled growth of pyrite FeS2 crystallites via a polymer-assisted hydrothermal route[J]. Crystengcomm, 2010, 12(11):3797-3805.

[1] Wang D W ,  Wang Q H ,  Wang T M . Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method[J]. Crystengcomm, 2009, 12(3):755-761.