Google Scholar: https://scholar.google.com/citations?user=5KgNBgUAAAAJ
Personal Webpage: https://boxiangwang-light.github.io/
期刊论文
[65] S. H. Jin, F. Yi, D. Yang, Y. J. Peng, M. Q. Liu, C. Y. Zhao, Ming Xiao*, B. X. Wang*. Making color display cool: An electrochemical self-cooled dynamic structural color device, 2024, under revision
[64] T. Xie, S. H. Jin, C. Y. Zhao, B. X. Wang*. Design of a dynamically switchable metamaterial solar heating and daytime radiative cooling device based on reversible metal electrodeposition, Journal of Optics, 2024.
[63] Z. Gong, B. X. Wang*, C. Y. Zhao*, Modulation of radiative heat transfer by high-order topological phonon polaritons, Physical Review B, 110, 115419, 2024
[62] W. B. Zhang†, B. X. Wang†, C. Y. Zhao*, et al, Observation of colossal near-field radiative heat transfer mediated by coupled polaritons with an ultrahigh dynamic range, Advanced Materials, 2405885, 2024 († equal contribution)
[61] J. H. Zhou, B. X. Wang, C.Y. Zhao. Large-Area Dual-Band Hybrid Metagrating Thermal Emitter for Gas Detection, IEEE Sensors Journal, 24(13): 20468 - 20475, 2024
[60] J. M. Xu, R. B. Su, Z. Gong, C. Y. Zhao*, B. X. Wang*, Tunable narrowband and diffuse metasurface thermal emitters based on doped semiconductors, International Journal of Thermal Sciences, 200: 108956, 2024,
[59] F. Yi, B. X. Wang*, C. Y. Zhao*, et al, Towards-standardization energy conversion efficiency measuring system for thermophotovoltaic cells, Applied Energy, under review
[58] B. X. Wang, C. Y. Zhao*. “High-order topological quantum optics in ultracold atomic metasurfaces”, arXiv preprint arXiv:2108.01509, 2021.
[59] F. Yi, M. Q. Liu, N. N. Wang, B. X. Wang*, C. Y. Zhao*. “Near-field observation of midinfrared edge modes in topological photonic crystals”, Applied Physics Letters, 123: 081110, 2023.
[56] S. H. Jin, F. Yi, J. M Xu, B. X. Wang*, C. Y. Zhao*. “Planar Coupled Nanocavities for Efficient Solar Spectrum Engineering”, Advanced Optical Materials, 2300980, 2023.
[55] B. X. Wang, C. Y. Zhao*. “Radiative heat transfer mediated by topological phonon polaritons in a family of quasiperiodic nanoparticle chains”, International Journal of Heat and Mass Transfer, 210: 124163, 2023
[54] B. X. Wang, C. Y. Zhao*. “Topological phonon polariton enhanced radiative heat transfer in bichromatic nanoparticle arrays mimicking Aubry-André-Harper model”, Physical Review B, 107: 125409, 2023.
[53] S. H. Jin, Zongbei He, Qi Ding, Huangyue Cai, Hanchao Zhang, Qiang Zeng, Gang Li, C. Y. Zhao, Na Ni*, B. X. Wang*. Improved measurement of local thermal conductivities of coatings by the steady-state Raman spectroscopy method: a case study in TRISO particles, Journal of the European Ceramic Society, 44 (3), 1412-1420, 2024.
[52] Y. K. Chen, B. X. Wang, C. Y. Zhao*. “Dual-band spatially-distinguishable metasurface thermal emitter for filterless mid-infrared gas sensing”, International Journal of Thermal Sciences, 185, 108069, 2023.
[51] X. J. Liu., C. Y. Zhao*, B. X. Wang, J. M. Xu. “Tailorable bandgap-dependent selective emitters for thermophotovoltaic systems”, International Journal of Heat and Mass Transfer, 200, 123504, 2023.
[50] S. H. Jin, M. Xiao, W. B. Zhang, B. X. Wang*, C. Y. Zhao*. “Daytime sub-ambient radiative cooling with vivid structural colors mediated by coupled nanocavities”, ACS Applied Materials & Interfaces, 14 (49), 54676-54687, 2022.
[49] W. B. Zhang, B. X. Wang, J. M. Xu, C. Y. Zhao*. “High-quality quasi-monochromatic near-field radiative heat transfer designed by adaptive hybrid Bayesian optimization”, Science China Technological Sciences, 65, 2910–2920, 2022.
[48] S. H. Jin, M. Xiao, J. Chen, J. M. Xu, B. X. Wang*, C. Y. Zhao*. “Nanocomposite coatings with plasmonic structural colors for subambient daytime radiative cooling”, Solar Energy, 240, 211-224, 2022.
[47] J. Chen, B. X. Wang, C. Y. Zhao*. “Near-field radiative heat transport between nanoparticles inside a cavity configuration”. International Journal of Heat and Mass Transfer, 196, 123213, 2022.
[46] W. B. Zhang, B. X. Wang, C. Y. Zhao*. “Active control and enhancement of near-field heat transfer between dissimilar materials by strong coupling effects”, International Journal of Heat and Mass Transfer, 188, 122588, 2022.
[45] B. X. Wang, C. Y. Zhao*. “Interferences and localization in disordered media with anisotropic structural correlations”, Journal of Applied Physics, 130, 133101, 2021.
[44] T.C. Huang, B. X. Wang, C. Y. Zhao*. “A novel selective thermophotovoltaic emitter based on multipole resonances”, International Journal of Heat and Mass Transfer, 182, 122039, 2021.
[43] T.C. Huang, B. X. Wang, W. B. Zhang, C. Y. Zhao*. “Ultracompact energy transfer in anapole-based metachains”, Nano Letters, 21(14), 6102–6110, 2021.
[42] W. B. Zhang, B. X. Wang, C. Y. Zhao*. “Selective Thermophotovoltaic Emitter with Aperiodic Multilayer Structures Designed by Machine Learning”, ACS Applied Energy Materials, 4(2): 2004-2013, 2021.
[41] X. J. Liu, B. X. Wang, J. Chen, C. Y. Zhao*. “Polarization signatures of structural anisotropy for radiative transfer in fibrous materials”, Journal of Quantitative Spectroscopy and Radiative Transfer, 276, 107928, 2021.
[40] J. Chen, L. Lu*, Q. Gong, B. X. Wang, S. Jin, M Wang. “Development of a new spectral selectivity-based passive radiative roof cooling model and its application in hot and humid region”, Journal of Cleaner Production, 307, 127170, 2021.
[39] J. Chen, B. X. Wang, C. Y. Zhao*. “Scattering-type multi-probe scanning thermal microscope based on near-field thermal radiation”, International Journal of Heat and Mass Transfer, 181, 121869, 2021.
[38] B. X. Wang, C. Y. Zhao*. “Topological quantum optical states in quasiperiodic cold atomic chains”, Physical Review A, 103: 013727, 2021.
[37] B. X. Wang, C. Y. Zhao*. “The dependent scattering effect on radiative properties of micro/nanoscale discrete disordered media”, Annual Review of Heat Transfer, Invited, 23: 231-353, 2020, New York: Begell House Inc.
[36] B. X. Wang, C. Y. Zhao*. “Terahertz topological plasmon polaritons for robust temperature sensing”, Physical Review Materials, 4(7): 075201, 2020.
[35] B. X. Wang, C. Y. Zhao*. “Near-resonant light transmission in two-dimensional dense cold atomic media with short-range positional correlations”, Journal of the Optical Society of America B, 37(6): 1757-1768, 2020.
[34] J. Chen, C. Y. Zhao*, B. X. Wang. “Effect of nanoparticle aggregation on the thermal radiation properties of nanofluids: an experimental and theoretical study”, International Journal of Heat & Mass Transfer, 154:119690, 2020.
[33] X. J. Liu, X. W. Chen, C. Y. Zhao*, B. X. Wang. “Polarized light transport in anisotropic media composed of ellipsoids: Influence of structural anisotropy”, Journal of Quantitative Spectroscopy & Radiative Transfer, 245:106854, 2020.
[32] B. X. Wang, C. Y. Zhao*. “Wideband tunable infrared topological plasmon polaritons in dimerized chains of doped-silicon nanoparticles”, Journal of Applied Physics, 127 (7): 073106, 2020.
[31] B. X. Wang, M. Q. Liu, T. C. Huang, C. Y. Zhao*. “Micro/nanostructures for far-field thermal emission control: an overview”, ES Energy & Environment, Invited Review, 6: 18-28, 2019.
[30] T. C. Huang, B. X. Wang, C. Y. Zhao*. “Strong coupling between a plasmonic Fano resonance and anapole states in a metallic-dielectric antenna”, Journal of Physics D: Applied Physics, 52 (44): 445102, 2019.
[29] W. B. Zhang, C. Y. Zhao*, B. X. Wang. “Enhancing near-field heat transfer between composite structures through strongly coupled surface modes”, Physical Review B, 100:075425, 2019.
[28] W. A. Ge, C. Y. Zhao*, B. X. Wang. “Thermal radiation and conduction in functionally graded thermal barrier coatings. Part I: Experimental study on radiative properties”, International Journal of Heat & Mass Transfer, 134:101-113, 2019.
[27] W. A. Ge, C. Y. Zhao*, B. X. Wang. “Thermal radiation and conduction in functionally graded thermal barrier coatings. Part II: Experimental thermal conductivities and heat transfer modeling”, International Journal of Heat & Mass Transfer, 134:166-174, 2019.
[26] M. Q. Liu, C. Y. Zhao*, B. X. Wang. “Design principles based on analysis in R (ε)-I (ε) space to achieve near-perfect full-spectrum volumetric solar-thermal conversion”, Solar Energy, 188:533-544, 2019.
[25] C. Y. Liu, Y. Z. Wu, B. X. Wang, C. Y. Zhao, H. Bao*. “Effect of atmospheric water vapor on radiative cooling performance of different surfaces”, Solar Energy, 183:218-225, 2019.
[24] T. C. Huang, B. X. Wang, C. Y. Zhao*. “Tuning toroidal dipole resonances in dielectric metamolecules by an additional electric dipolar response”, Journal of Applied Physics, 125:093102, 2019.
[23] B. X. Wang, C. Y. Zhao*. “Topological phonon polaritions in one-dimensional non-Hermitian nanoparticle chains”, Physical Review B, 98:165435, 2018.
[22] M. Q. Liu, C. Y. Zhao*, B. X. Wang. “Active tuning of directional scattering by combining magneto-optical effects and multipolar interferences”, Nanoscale, 10:18282-18290, 2018.
[21] J. Chen, C. Y. Zhao*, B. X. Wang. “Near-field thermal radiative transfer in assembled spherical systems composed of core-shell nanoparticles”, Journal of Quantitative Spectroscopy & Radiative Transfer, 219:304-312, 2018.
[20] B. X. Wang, C. Y. Zhao*. “Topological photonic states in one-dimensional dimerized ultracold atomic chains”, Physical Review A, 98:023808, 2018.
[19] B. X. Wang, C. Y. Zhao*. “Achieving strongly negative scattering asymmetry factor in random media composed of dual-dipolar particles”, Physical Review A, 97:023836, 2018.
[18] B. X. Wang, C. Y. Zhao*. “Structural correlations and dependent scattering mechanism on the radiative properties of random media”, Journal of Quantitative Spectroscopy & Radiative Transfer, 218:72-85, 2018.
[17] B. X. Wang, C. Y. Zhao*. “Analysis of dependent scattering mechanism in hard-sphere Yukawa random media”, Journal of Applied Physics, 123:223101, 2018.
[16] B. X. Wang, C. Y. Zhao*. “Effect of dependent scattering on light absorption in highly scattering random media”, International Journal of Heat & Mass Transfer, 125:1069-1078, 2018.
[15] M. Q. Liu, C. Y. Zhao*, B. X. Wang. “Polarization management based on dipolar interferences and lattice couplings”, Optics Express, 26 (6):7235-7252, 2018.
[14] T. C. Huang, B. X. Wang, C. Y. Zhao*. “Negative refraction in metamaterials based on dielectric spherical particles”, Journal of Quantitative Spectroscopy & Radiative Transfer, 214:82-93, 2018.
[13] M. Q. Liu, C. Y. Zhao*, B. X. Wang, X. Fang. “Role of short-range order in manipulating light absorption in disordered media”, Journal of the Optical Society of America B, 35 (3):504-513, 2018.
[12] X. W. Chen, C. Y. Zhao*, B. X. Wang. “Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings”, Journal of Quantitative Spectroscopy & Radiative Transfer, 210:116-216, 2018.
[11] B. X. Wang, C. Y. Zhao*, Y. H. Kan, T. C. Huang. “Design of metasurface polarizers based on two-dimensional cold atomic arrays”, Optics Express, 25 (16):18760-18773, 2017.
[10] M. Xiao†, Z. Y. Hu†, Z. Wang, Y. W. Li, A. D. Tormo, N. L. Thomas, B. X. Wang, N. C. Gianneschi*, M. D Shawkey*, A. Dhinojwala*. “Bioinspired bright noniridescent photonic melanin supraballs”, Science Advances, 3(9): e1701151, 2017. †equal contribution
[9] B. X. Wang, C. Y. Zhao*. “Effect of anisotropy on thermal radiation transport in porous ceramics”, International Journal of Thermal Sciences, 111:301-309, 2017.
[8] Y. H. Kan, C. Y. Zhao*, X. Fang, B. X. Wang, “Designing ultrabroadband absorbers based on Bloch theorem and optical topological transition”, Optics Letters, 42 (10), 1879-1882, 2017.
[7] H. Bao*, Y. Chen, B. X. Wang, X. Fang, C. Y. Zhao, X. L. Ruan. “Double-layer nanoparticle-based coating for efficient terrestrial radiative cooling”, Solar Energy Materials & Solar Cells, 168: 78-84, 2017.
[6] J. D. Gao, C. Y. Zhao*, B. X. Wang. “Effect of metal particles in cermets on spectral selectivity”, Journal of Applied Physics, 121: 113105, 2017.
[5] B. X. Wang, C. Y. Zhao*. “Predicting radiative transport properties of plasma sprayed porous ceramics”, Journal of Applied Physics, 119:125110, 2016.
[4] H. Shi, C. Y. Zhao*, B. X. Wang. “Modeling the thermal radiation properties of thermal barrier coatings based on a random generation algorithm”, Ceramics International, 42(8):9752-9761, 2016.
[3] B. X. Wang, C. Y. Zhao*, “Modeling radiative properties of air plasma sprayed thermal barrier coatings in the dependent scattering regime”, International Journal of Heat & Mass Transfer, 89:920-928, 2015.
[2] B. J. Zhang, B. X. Wang, C. Y. Zhao*, “Microstructural effect on the radiative properties of YSZ thermal barrier coatings (TBCs)”, International Journal of Heat & Mass Transfer, 73:59-66, 2014.
[1] G. Yang, C. Y. Zhao*, B. X. Wang, “Experimental study on radiative properties of air plasma sprayed thermal barrier coatings”, International Journal of Heat & Mass Transfer, 66:695-698, 2013.
专利:
13. 王博翔,金圣皓,赵长颖. 一种基于耦合效应的半透明太阳能电池彩色电极构建方法.中国发明专利, CN202310482093.5
12. 赵长颖, 易帆, 王博翔, 刘梦琦. 一种中红外拓扑热辐射波导结构及开关. 中国发明专利, CN202211285462.3
11. 何明键,齐宏,王博翔,徐建明,任亚涛. 一种结合近场热光伏系统的多效空间电源装置. 中国发明专利,ZL202210863488.5
10. 赵长颖,刘旭晶,王博翔,徐建明,张文斌. 一种应用于热光伏系统的超表面选择性辐射器及其制备方法. 中国发明专利,CN202111449530.0
9. 赵长颖,王博翔,张文斌,黄天成,刘梦琦,陈杰,刘旭晶,金圣皓. 基于超材料热辐射器的热光伏发电系统及其制备方法. 中国发明专利,ZL202110155540.7
8. 赵长颖,金圣皓,王博翔. 一种具有结构色的辐射制冷复合涂层、应用及制备方法. 中国发明专利,ZL202110592222.7
7. 赵长颖,陈杰,王博翔,张文斌,刘旭晶,金圣皓. 基于多探针的无光源式近场热辐射扫描显微镜系统. 中国发明专利,ZL202110431133.4
6. 赵长颖,金圣皓,王博翔. 一种具有结构色的辐射制冷多层膜结构. 中国发明专利,CN202110255747.1
5. 赵长颖,黄天成,王博翔. 基于近场零极模态的亚波长热辐射波导器件构造方法及系统. 中国发明专利,ZL202010969111.9
4. 赵长颖,张文斌,王博翔. 基于贝叶斯优化的多层膜选择性辐射器构建方法及系统. 中国发明专利,ZL 202010456196.0
3. 赵长颖,张文斌,王博翔,陈杰,陈轶康. 基于近场辐射的可调控换热器件构造方法及系统. 中国发明专利,CN202010456179.7
2. 赵长颖,陈轶康,王博翔,黄天成. 基于超材料的无滤波片型红外热辐射气体浓度传感器. 中国发明专利,ZL201911180664.X
1. 鲍华,闫晨,赵长颖,王博翔. 一种辐射制冷双层纳米涂层及其制备方法. 中国发明专利,ZL201510846914.4