6412
当前位置: 首页   >  成果及论文
成果及论文

2023年

【1】Meng Z, Zhao F, Wang Z, et al. An efficient tetrahydroquinazolin-2-amine derivative-grafted cellulose fluorescent probe for detection of Cu2+ and Zn2+[J]. Carbohydrate Polymers, 2023, 303: 120445. https://doi.org/10.1016/j.carbpol.2022.120445

【2】Tian X, Li M, Zhang Y, et al. A coumarin-based fluorescent probe for hydrazine detection and its applications in real water samples and living cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 437: 114467.https://doi.org/10.1016/j.jphotochem.2022.114467

【3】Gong S, Qin A, Zhang Y, et al. A novel flavonol-based fluorescent probe for rapid detection of Cysteine in food samples and its applications in bioimaging systems[J]. Microchemical Journal, 2022, 183: 108034.https://doi.org/10.1016/j.microc.2022.108034

【4】Liang Y, Chen Z, Liu Q, et al. A NIR BODIPY-based ratiometric fluorescent probe for HClO detection with high selectivity and sensitivity in real water samples and living zebrafish[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 290: 122268.  https://doi.org/10.1016/j.saa.2022.122268

【5】Li M, Gao M, Fu Q, et al. Novel 2-Benzo [d] thiazolyl-4-quinolinylphenol skeleton-based turn-on fluorescent probe for H2S detection and its multiple applications in water environment, foodstuffs, and living organisms[J]. Journal of Agricultural and Food Chemistry, 2022. https://doi.org/10.1021/acs.jafc.2c08385

【6】Du W, Shen Z, Liang Y, et al. A highly effective “naked eye” colorimetric and fluorimetric curcumin-based fluorescent sensor for specific and sensitive detection of H2O2 in vivo and in vitro[J]. Analyst, 2023, 148(8): 1824-1837. https://doi.org/10.1039/D3AN00340J

【7】Meng Z, Wang Z, Liang Y, et al. A naphthalimide functionalized chitosan-based fluorescent probe for specific detection and efficient adsorption of Cu2+[J]. International Journal of Biological Macromolecules, 2023, 239: 124261. https://doi.org/10.1016/j.ijbiomac.2023.124261

【8】Meng Z, Li X, Liang Y, et al. An efficient chitosan-naphthalimide fluorescent probe for simultaneous detection and adsorption of Hg2+ and its application in seafood, water and soil environments[J]. International Journal of Biological Macromolecules, 2023, 247: 125807. https://doi.org/10.1016/j.ijbiomac.2023.125807

【9】Gong S, Qin A, Tian J, et al. Fluorescent probe for sensitive discrimination of GSH and Hcy/Cys with single-wavelength excitation in biological systems via different emission[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 302: 123128. https://doi.org/10.1016/j.saa.2023.123128

【10】Gong S, Qin A, Zhang Y, et al. Construction of a Flavonol-Based Fluorescent Probe with a Large Stokes Shift for Highly Selective and Rapid Monitoring of H2S in Water, Foodstuff, and Living Systems[J]. ACS Sustainable Chemistry & Engineering, 2023. https://doi.org/10.1021/acssuschemeng.3c04471

【11】Shen Z, Yang Y, Gong S, et al. Rational design and comparison of two pyrimidine-based ultra-fast response fluorescent probes from 2-hydroxy-3-pinanone for monitoring Fe2+ homeostatic systems in living organisms[J]. Microchemical Journal, 2023: 109519. https://doi.org/10.1016/j.microc.2023.109519




2022年

【1】Wang Z, Zhang Y, Liang Y, et al. Novel bis-camphor-derived colorimetric and fluorescent probe for rapid and visual detection of cysteine and its versatile applications in food analysis and biological imaging[J]. Journal of Agricultural and Food Chemistry, 2022.https://doi.org/10.1021/acs.jafc.1c06294

【2】Li M, Gao Y, Xu K, et al. Quantitatively analysis and detection of CN in three food samples by a novel nopinone-based fluorescent probe[J]. Food Chemistry, 2022: 132153.https://doi.org/10.1016/j.foodchem.2022.132153

【3】Gong S, Qin A, Zhang Y, et al. A new ratiometric AIE fluorescent probe for detecting cysteine in food samples and imaging in the biological system[J]. Food Chemistry, 2022: 134108. https://doi.org/10.1016/j.foodchem.2022.134108

【4】Li M, Gao Y, Xu K, et al. Rational design and comparison of three benzazole-based fluorescent probes for sensitively and reversibly detecting BF3[J]. Dyes and Pigments, 2022, 205: 110558. https://doi.org/10.1016/j.dyepig.2022.110558

【5】Liang Y, Zhang Y, Li M, et al. A camphor-based fluorescent probe with high selectivity and sensitivity for formaldehyde detection in real food samples and living zebrafish[J]. Microchemical Journal, 2022, 177: 107305.https://doi.org/10.1016/j.microc.2022.107305

【6】Wang Z, Zhang Y, Zhu Y, et al. Real-time visualization of lysosomal pH fluctuations in living cells with a ratiometric fluorescent probe[J]. Microchemical Journal, 2022: 107601. https://doi.org/10.1016/j.microc.2022.107601

【7】Qin A, Zhang Y, Gong S, et al. A novel flavonol-based colorimetric and turn-on fluorescent probe for rapid determination of hydrazine in real water samples and its bioimaging in vivo and in vitro[J]. Frontiers of Chemical Science and Engineering,2022: 1-10. https://doi.org/10.1007/s11705-022-2171-1

【8】Gong S, Zhang Y, Qin A, et al. A novel AIE-active camphor-based fluorescent probe for simultaneous detection of Al3+ and Zn2+ at dual channels in living cells and zebrafish[J]. Analyst, 2022, 147(1): 87-100.https://doi.org/10.1039/D1AN01733K

【9】Gao Y, Li M, Tian X, et al. Colorimetric and turn-on fluorescent chemosensor with large Stokes shift for sensitively probing cyanide anion in real samples and living systems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022: 120882.https://doi.org/10.1016/j.saa.2022.120882【10】Shen Z, Gao Y, Li M, et al. Development and application of a novel β-diketone difluoroboron-derivatized fluorescent probe for sensitively detecting H2S[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 281: 121609. https://doi.org/10.1016/j.saa.2022.121609

【11】Wang Z, Zhang Y, Liang Y, et al. Rational design of a facile camphor-based fluorescence turn-on probe for real-time tracking of hypochlorous acid in vivo and vitro[J]. Analyst, 2022.https://doi.org/10.1039/D2AN00321J

【12】Xu K, Zhang C, Li M, et al. A myrtenal-based colorimetric and fluorescent probe for reversibly monitoring alkaline pH and bioimaging in living cells and zebrafish[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2022: 113962.https://doi.org/10.1016/j.jphotochem.2022.113962

【13】Tian X, Liu H, Li M, et al. A camphor-based Schiff base fluorescent probe for detection of alkaline pH and its applications in living cells[J]. Journal of Molecular Structure, 2022, 1251: 132038.https://doi.org/10.1016/j.molstruc.2021.132038

2021年

【1】Wang Z, Zhang Y, Meng Z, et al. Development of a ratiometric fluorescent probe with large Stokes shift and emission wavelength shift for real-time tracking of hydrazine and its multiple applications in environmental analysis and biological imaging[J]. Journal of Hazardous Materials, 2022, 422: 126891.https://doi.org/10.1016/j.jhazmat.2021.126891

【2】Zhang Y, Yang H, Li M, et al. A red-emitting ratiometric fluorescent probe with large Stokes shift and emission peak shift for imaging hypochlorous acid in living cells and zebrafish[J]. Dyes and Pigments, 2022, 197: 109861.https://doi.org/10.1016/j.dyepig.2021.109861

【3】Zhang Y, Gong S, Song J, et al. A robust camphor-based colorimetric and fluormetric dual-modal probe with a large Stokes shift for real-time monitoring of endogenous labile Fe2+ in vivo and in vitro[J]. Dyes and Pigments, 2021, 194: 109590.https://doi.org/10.1016/j.dyepig.2021.109590

【4】Gao Y, Li M, Tian X, et al. Two novel red-emitting fluorescent chemosensors for trace water determination with high sensitivity and large Stokes shift[J]. Microchemical Journal, 2021, 169: 106631.https://doi.org/10.1016/j.microc.2021.106631

【5】Ruan S, Wu S, Yang L, et al. A novel turn-on fluorescent probe based on berberine for detecting Hg2+ and ClO with the different fluorescence signals[J]. Microchemical Journal, 2021, 166: 106199.https://doi.org/10.1016/j.microc.2021.106199

【6】Zhang Y, Qin A, Gong S, et al. Two birds with one stone: A novel dual-functional fluorescent probe for simultaneous monitoring and real-time imaging of alkaline pH and viscosity in living cells[J]. Microchemical Journal, 2022, 173: 107010.https://doi.org/10.1016/j.microc.2021.107010

【7】Yang L, Li M, Wang Y, et al. An isocamphanyl-based fluorescent “turn-on” probe for highly sensitive and selective detection of Ga3+ and application in vivo and in vitro[J]. Analyst, 2021, 146(23): 7294-7305.https://doi.org/10.1039/D1AN01368H

【8】Liang Y, Zhang Y, Li M, et al. A highly effective “turn-on” camphor-based fluorescent probe for rapid and sensitive detection and its biological imaging of Fe2+[J]. Analytical and Bioanalytical Chemistry, 2021, 413(25): 6267-6277.https://doi.org/10.1007/s00216-021-03581-4

【9】Yang L, Li M, Ruan S, et al. Highly efficient coumarin-derived colorimetric chemosensors for sensitive sensing of fluoride ions and their applications in logic circuits[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 255: 119718.https://doi.org/10.1016/j.saa.2021.119718

【10】Li M, Gao Y, Zhang Y, et al. A novel ratiometric fluorescent chemosensor for detecting malononitrile and application assisted with smartphone[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 262: 120135.https://doi.org/10.1016/j.saa.2021.120135

【11】Liu H, Li M, Zhang Y, et al. Discovery of a novel camphor-based fluorescent probe for Co2+ in fresh vegetables with high selectivity and sensitivity[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 248: 119213.https://doi.org/10.1016/j.saa.2020.119213

【12】Zhang C, Zhang Y, Li M, et al. A novel AIE fluorescent probe based on myrtenal for Cu2+ detection in a near-perfect aqueous medium and bioimaging in vegetables and zebrafish[J]. New Journal of Chemistry, 2021, 45(34): 15247-15254.https://doi.org/10.1039/D1NJ02662C

【13】张明光, 李明新, 杨益琴,等. 诺蒎酮基喹唑啉-2-胺型铜离子荧光探针的合成及其应用研究[J]. 有机化学, 2021, 41(3):9.https://doi.org/10.6023/cjoc202008049

【14】秦阿慧, 巩帅, 张燕,等. 一种用于检测硫化氢的新型异长叶烷基吲唑类颜色比例型探针[J]. 分析化学, 2021, 49(11):15. https://doi.org/10.19756/j.issn.0253-3820.210449

【15】Ruan S, Zhang Y, Wu S, et al. A novel berberine-based colorimetric and fluorometric probe for Hg2+ detection and its applications in water samples[J]. Inorganic Chemistry Communications, 2021, 132: 108847.https://doi.org/10.1016/j.inoche.2021.108847

2020年

1】Wang Z, Zhang Y, Yin J, et al. An easily available camphor-derived ratiometric fluorescent probe with AIE feature for sequential Ga3+ and ATP sensing in a near-perfect aqueous media and its bio-imaging in living cells and mice[J]. Sensors and Actuators B: Chemical, 2020, 320: 128249.https://doi.org/10.1016/j.snb.2020.128249

【2】Wang Z, Zhang Y, Yin J, et al. A novel camphor-based “turn-on” fluorescent probe with high specificity and sensitivity for sensing mercury (II) in aqueous medium and its bioimaging application[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12348-12359.https://doi.org/10.1021/acssuschemeng.9b07843

【3】Wang Z, Zhang Y, Song J, et al. Two ultrafast responsive isolongifolanone based fluorescent probes for reversible and sensitive visualization of toxic BF3 in solution and in gas phase[J]. Sensors and Actuators B: Chemical, 2020, 304: 127083.https://doi.org/10.1016/j.snb.2019.127083

【4】Jiang Q, Wang Z, Li M, et al. A novel nopinone-based fluorescent probe for colorimetric and ratiometric detection of hypochlorite and its applications in water samples and living cells[J]. Analyst, 2020, 145(3): 1033-1040. https://doi.org/10.1039/C9AN01981B

【5】Li M, Ruan S, Yang H, et al. Nopinone-based AIE-active dual-functional fluorescent chemosensor for Hg2+ and Cu2+ and its environmental and biological applications[J]. Dalton Transactions, 2020, 49(43): 15299-15309https://doi.org/10.1039/D0DT02888F

【6】Yang H, Li M, Zhang Y, et al. A smart nopinone-based fluorescent probe for colorimetric and fluorogenic detection of hydrazine in water and plants with high sensitivity and selectivity[J]. Journal of Luminescence, 2020, 226: 117436.https://doi.org/10.1016/j.jlumin.2020.117436

【7】Yin J, Wang Z, Zhao F, et al. A novel dual functional pyrene-based turn-on fluorescent probe for hypochlorite and copper (II) ion detection and bioimaging applications[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 239: 118470.https://doi.org/10.1016/j.saa.2020.118470

【8】Jiang Q, Wang Z, Li M, et al. A nopinone based multi-functional probe for colorimetric detection of Cu2+ and ratiometric detection of Ag+[J]. Photochemical & Photobiological Sciences, 2020, 19(1): 49-55.https://doi.org/10.1039/C9PP00297A

【9】Jiang Q, Wang Z, Li M, et al. A novel dual-response fluorescent probe based on nopinone for discriminative detection of hydrazine and bisulfate from different emission channels[J]. Tetrahedron Letters, 2020, 61(29): 152103.https://doi.org/10.1016/j.tetlet.2020.152103

【10】Ruan S, Gao Y, Wang Y, et al. A novel berberine-based colorimetric and fluorimetric probe for hydrazine detection[J]. New Journal of Chemistry, 2020, 44(36): 15752-15757.https://doi.org/10.1039/D0NJ03599H

【11】姜倩, 王忠龙, 李明新,等. 具有聚集诱导发光效应的诺蒎烷基β-二酮氟化硼络合物的合成及溶剂化显色效应的研究[J]. 有机化学, 2020, 40(12):8.https://doi.org/10.6023/cjoc202005049


2019年及以前

【1】Wang Z, Zhang Y, Song J, et al. Three novel camphor-based fluorescence probes for ratiometric detection of hypochlorite and bio-imaging in living cells[J]. Sensors and Actuators B: Chemical, 2019, 284: 148-158.https://doi.org/10.1016/j.snb.2018.12.104

【2】Wang Z, Zhang Y, Song J, et al. A novel isolongifolanone based fluorescent probe with super selectivity and sensitivity for hypochlorite and its application in bio-imaging[J]. Analytica Chimica Acta, 2019, 1051: 169-178.https://doi.org/10.1016/j.aca.2018.11.028

【3】Wang Z, Zhang Y, Song J, et al. A highly specific and sensitive turn-on fluorescence probe for hypochlorite detection based on anthracene fluorophore and its bioimaging applications[J]. Dyes and Pigments, 2019, 161: 172-181.https://doi.org/10.1016/j.dyepig.2018.09.046

【4】Jiang Q, Wang Z, Li M, et al. A novel nopinone-based colorimetric and ratiometric fluorescent probe for detection of bisulfite and its application in food and living cells[J]. Dyes and Pigments, 2019, 171: 107702.https://doi.org/10.1016/j.dyepig.2019.107702

【5】Li M, He J, Wang Z, et al. Novel nopinone-based turn-on fluorescent probe for hydrazine in living cells with high selectivity[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 22754-22762.https://doi.org/10.1021/acs.iecr.9b04413

【6】Zhang Y, Wang Z, Song J, et al. A simple camphor based AIE fluorescent probe for highly specific and sensitive detection of hydrazine and its application in living cells[J]. Analytical Methods, 2019, 11(31): 3958-3965.https://doi.org/10.1039/C9AY00862D

【7】Jiang Q, Li M, Song J, et al. A highly sensitive and selective fluorescent probe for quantitative detection of Al3+ in food, water, and living cells[J]. RSC Advances, 2019, 9(18): 10414-10419.https://doi.org/10.1039/C9RA00447E

【8】Jiang Q, Zhang M, Wang Z, et al. Nopinone-based aggregation-induced emission (AIE)-active difluoroboron β-diketonate complex: photophysical, electrochemical and electroluminescence properties[J]. RSC Advances, 2018, 8(52): 30055-30060.https://doi.org/10.1039/C8RA05031G

【9】Wang Z, Zhang Y, Li M, et al. Two D-π-A type fluorescent probes based on isolongifolanone for sensing acidic pH with large Stokes shifts[J]. Tetrahedron, 2018, 74(24): 3030-3037.https://doi.org/10.1016/j.tet.2018.05.008

【10】Wang Z, Yang J, Liu P, et al. Isolongifolanone-based molecular fluorescence marker for imaging endogenous Zn2+ in vivo[J]. Tetrahedron, 2017, 73(40): 5912-5919.https://doi.org/10.1016/j.tet.2017.08.033

【11】王忠龙, 杨金来, 杨益琴,等. 具有聚集诱导发光现象效应的异长叶烷酮基锌离子荧光探针及其在植物细胞成像中的应用[J]. 有机化学, 2018, 38(006):1401-1413.https://doi.org/10.6023/cjoc201712009

【12】Wang Z, Yang J, Yang Y, et al. A novel hexahydroquinazolin-2-amine-based fluorescence sensor for Cu2+ from isolongifolanone and its biological applications[J]. RSC Advances, 2017, 7(53): 33263-33272.https://doi.org/10.1039/C7RA04484D

【13】Yang J, Xu X, Rui J, et al. Synthesis, optical properties and application of a set of novel pyrazole nopinone derivatives[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 183: 60-67.https://doi.org/10.1016/j.saa.2017.04.054

【14】Yang J, Xu H, Xu X, et al. Synthesis, optical properties, and cellular imaging of novel quinazolin-2-amine nopinone derivatives[J]. Dyes and Pigments, 2016, 128: 75-83.https://doi.org/10.1016/j.dyepig.2016.01.016

【15】Yang J, Xu X, Yang Y, et al. Synthesis, optical properties, and acid–base indicating performance of novel ketene hydroxybenzylidene nopinone derivatives[J]. RSC Advances, 2016, 6(113): 111760-111766.https://doi.org/10.1039/C6RA20809F

【16】Yang J, Rui J, Xu X, et al. Fluorescence staining of salicylaldehyde azine, and applications in the determination of potassium tert-butoxide[J]. RSC Advances, 2016, 6(36): 30636-30641.https://doi.org/10.1039/C6RA01035K

【17】Yang J, Fang H, Fang X, et al. A novel tetrahydroquinazolin-2-amine-based high selective fluorescent sensor for Zn2+ from nopinone[J]. Tetrahedron, 2016, 72(30): 4503-4509.https://doi.org/10.1016/j.tet.2016.06.007