4397
当前位置: 首页   >  成果及论文
成果及论文

2024

  • Yang, S., Zheng, L., Wu, T., Sun, S., Zhang, M., Li, M., & Wang, M.* (2024). High-throughput soybean pods high-quality segmentation and seed-per-pod estimation for soybean plant breeding. Engineering Applications of Artificial Intelligence, 129, 107580.  

  •  陈慧颖,宋青峰,常天根,郑立华,朱新广,张漫 王敏娟*.基于YOLOv5 m和CBAM-CPN的单分蘖水稻植株表型参数提取.农业工程学报,2024, 1-8.

2023

  •  Mi, J., Ma, C., Zheng, L.,Zhang, M., Li, M., & Wang, M. * (2023). WGAN-CL: A Wasserstein GAN with confidence loss for small-sample augmentation. Expert Systems with Applications, 233, 120943.  

  •   Li, J., Wang, Y., Zheng, L., Zhang, M., & Wang, M.* (2023). Towards end-to-end deep RNN based networks to precisely regress of the lettuce plant height by single perspective sparse 3D point cloud. Expert Systems with Applications, 229, 120497. 

  •  陈孟燕,王敏娟,宋青峰,朱新广,李民赞 & 郑立华.(2023).基于ECA-FV-CNN的水稻单籽粒质量分级方法.农业机械学报(S2),235-243.

  • Wang, M.*, Li, W., Zhang, W., Li, G., Dong, K., Zheng, L., ... & Chen, Y. (2023). Single pig pose estimation using cross-stage stacked hourglass network. In Fourth International Conference on Artificial Intelligence and Electromechanical Automation (AIEA 2023) (Vol. 12709, pp. 96-103). SPIE.

  • Guo, X., Zhong, Y., Zhao, M., Zhang, M., & Wang, M*. (2023). Algorithm for acquiring lettuce plant height based on image recognition network. In Fourth International Conference on Artificial Intelligence and Electromechanical Automation (AIEA 2023) (Vol. 12709, pp. 81-88). SPIE.

2022

  • Yang, S., Zheng, L., Chen, X., Zabawa, L., Zhang, M., & Wang, M.* (2022). Transfer learning from synthetic in-vitro soybean pods dataset for in-situ segmentation of on-branch soybean pods. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR. (pp. 1666-1675). 

  • Wang, L., Zheng, L., & Wang, M. (2022). 3D Point Cloud Instance Segmentation of Lettuce Based on PartNet. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR. (pp. 1647-1655).  

  •  Li, G., Liu, X., Ma, Y., Wang, B., Zheng, L., & Wang, M.* (2022). Body size measurement and live body weight estimation for pigs based on back surface point clouds. Biosystems Engineering, 218, 10-22.

  • Zhang, Y., Li, M., Li, G., Li, J., Zheng, L., Zhang, M., & Wang, M.* (2022). Multi-phenotypic parameters extraction and biomass estimation for lettuce based on point clouds. Measurement, 112094. 

  • Zhang, Y., Wu, M., Li, J., Yang, S., Zheng, L., Liu, X., & Wang, M. (2022). Automatic non-destructive multiple lettuce traits prediction based on DeepLabV3+. Journal of Food Measurement and Characterization, 1-17. 

  • 郭希岳,李劲松,郑立华,张漫,王敏娟*. 利用 Re-YOLOv5 和检测区域搜索算法获取大豆植株表型参数[J]. 农业工程学报, 2022,38(15):186-194.

2021

  • Yang, S., Zheng, L., Yang, H., Zhang, M., Wu, T., Sun, S., ... & Wang, M.*(2021). A Synthetic Datasets Based Instance Segmentation Network for High-throughput Soybean Pods Phenotype Investigation. Expert Systems with Applications, 116403.

  • Yang, S., Zheng, L., He, P., Wu, T., Sun, S., & Wang, M.* (2021). High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning. Plant Methods, 17(1), 1-17. 

  • Tuan, V. N., Dinh, T. D., Zhang, W., Khattak, A. M., Le, A. T., Saeed, I. A., ... & Wang, M.* (2021). A smart diagnostic tool based on deep kernel learning for on-site determination of phosphate, calcium, and magnesium concentration in a hydroponic system. RSC Advances, 11(19), 11177-11191. 

  •  Hao, X., Zhang, M., Zhou, T., Guo, X., Tomasetto, F., Tong, Y.*, & Wang, M.* (2021). An Automatic Light Stress Grading Architecture Based on Feature Optimization and Convolutional Neural Network. Agriculture, 11(11), 1126. 

  •  Si Yang, Lihua Zheng, Minjuan Wang*, Frédéric Boudon, Tingting Wu, Shi Sun, Peng He. Segmentation and recognition of high throughput soybean pods with a supervised edge attention network and synthetic datasets to extract pod harvestability traits [C]// ICCV. 2021. 

  • 王敏娟,刘小丫,马啸霄,常天根,宋青峰.基于堆叠沙漏网络的单分蘖水稻植株骨架提取[J].农业工程学报,2021,37(24):149-157.

  •  莹,李越,武婷婷,孙石,王敏娟*.基于密度估计和VGG-Two的大豆籽粒快速计数方法[J].智慧农业(中英文),2021,3(04):111-122.

2020

  • Hao, X., Jia, J., Gao, W., Guo, X., Zhang, W., Zheng, L., & Wang, M.* (2020). MFC-CNN: An automatic grading scheme for light stress levels of lettuce (Lactuca sativa L.) leaves. Computers and Electronics in Agriculture, 179, 105847.

  • Hao X., Jia J., Khattak, A. M., Zhang L., Guo X., Gao W.*, Wang M.* (2020).Growing Period Classification of Gynura bicolor DC Using GL-CNN. Computers and Electronics in Agriculture, 174, 105497. 

  •  Hao, X., Jia, J., Mi, J., Yang, S., Khattak, A. M., Zheng, L., Gao, W.*, Wang M.* (2020) An optimization model of light intensity and nitrogen concentration coupled with yield and quality. Plant Growth Regulation, 92(2), 319-331. 

  • Tuan, V. N., Dinh, T. D., Khattak, A. M., Zheng, L., Chu, X., Gao, W.*, & Wang, M.* (2020). Multivariate Standard Addition Cobalt Electrochemistry Data Fusion for Determining Phosphate Concentration in Hydroponic Solution. IEEE Access, 8, 28289-28300.

  • Yang, S., Zheng, L., Gao, W., Wang, B., Hao, X., Mi, J., & Wang, M.* (2020). An Efficient Processing Approach for Colored Point Cloud-Based High-Throughput Seedling Phenotyping. Remote Sensing, 12(10), 1540. 

  • Zhong, Z., Wang, M.*, Gao, W., & Zheng, L. (2020). A novel multisource pig-body multifeature fusion method based on Gabor features. Multidimensional Systems and Signal Processing, 1-24.

  •  Zhong Z., Gao W.*, Khattak, A. M., Wang M.* (2020) A Novel Multi-Source Image Fusion Method for Pig-body Multi-feature Detection in NSCT Domain. Multimedia Tools and Applications, 79(35), 26225-26244. 

  • Zhong Z., Wang M.*, Gao W.*(2020) A multisource image fusion method for multimodal pig-body feature detection. KSII Transactions on Internet and Information Systems, 4(11), 4395-4412.

  • Ngoc Tuan, V., Khattak, A. M., Zhu, H., Gao, W., & Wang, M.* (2020). Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution. Sensors20(18), 5314.

2019 and earlier

  • Hu H., Zhang G., Gao W*, & Wang, M.* (2019). Big Data Analytics for MOOC Video Watching Behavior Based on Spark. Neural Computing and Applications.1-9 

  • Zhang L, Jia J., Hao X., Zhao J., Gao W*, & Wang, M.* (2019). Deep Learning based Rapid Diagnosis System for Identifying Tomato Nutrition Disorders. KSII Transactions on Internet and Information Systems. 13(4).

  • Saeed, I. A., Wang, M.1, Ren, Y., Shi, Q., Malik, M. H., Sha, T., Cai Q., Gao, W. (2019). Performance analysis of dielectric soil moisture sensor. Soil and Water Research.

  • Chen, Z., Zhang, L., Khattak, A. M., Gao, W.*, & Wang, M.* (2019). Deep Feature Fusion by Competitive Attention for Pedestrian Detection. IEEE Access. 7, 21981-21989.

  • Li, Y., Jia, J., Zhang, L., Khattak, A. M., Sun, S., Gao, W.*, & Wang, M.* (2019). Soybean Seed Counting Based on Pod Image Using Two-Column Convolution Neural Network. IEEE Access7, 64177-64185.

  • Yang, C., Yang, Z., Khattak, A. M., Yang, L., Zhang, W., Gao, W.*, & Wang, M.*(2019). Structured Pruning of Convolutional Neural Networks via L1 Regularization. IEEE Access7, 106385-106394.

  • Wang, M., Dong, C., & Gao, W.* (2019). Evaluation of the growth, photosynthetic characteristics, antioxidant capacity, biomass yield and quality of tomato using aeroponics, hydroponics and porous tube-vermiculite systems in bio-regenerative life support systems. Life sciences in space research22, 68-75. 

  •  Wang, M., Zhong, Z., & Gao, W. (2019, October). An Exploration of Modal Pig-body Phenotype Detection Based on Hybrid Patterns. In Proceedings of the 3rd International Conference on Computer Science and Application Engineering. ACM, 1-5.  

  • Hao, X., Jia, J., Chu, X., Tao, S., Gao, W., & Wang, M. (2019). Greenhouse crop model: methods, trends and future perspectives. International Agricultural Engineering Journal, 28(4), 386-398.  

  • Wang, M., Zhong, Z., & Gao, W. (2018, October). Development and Challenges of Phenotypic Characterization in Modal Animals. In Proceedings of the 2nd International Conference on Computer Science and Application Engineering, ACM, 1-7.  

  • Dong, C., Chu, Z., Wang, M.1, Qin, Y., Yi, Z., Liu, H., & Fu, Y. (2018). Influence of nitrogen source and concentrations on wheat growth and production inside “Lunar Palace-1”. Acta Astronautica, 144, 371-379. 

  • Zhong, Z., Wang, M., Shi, Y., & Gao, W. (2018). A convolutional neural network-based flame detection method in video sequence. Signal, Image and Video Processing, 12(8), 1619-1627.  

  • IftikharA, Wang M.1, Ji Qiang, Shi Qinglan*, Zheng L., Liu X.*, Gao W.* (2018) Integrated Sensor for Estimating in Situ Soil Water Content in Vertical Profile. JOURNAL OF AGRICULTURAL SCIENCE.10(10),53-65

  • Zhang, L., Jia, J., Gui, G., Hao, X., Gao, W.*, & Wang, M.* (2018). Deep Learning based Improved Classification System for Designing Tomato Harvesting Robot. IEEE Access. 6, 67940-67950.  

  • Zhang X., Yu L., Wang, M *, & Gao W.* (2018). FM-based: Algorithm Research on Rural Tourism Recommendation Combining Seasonal and Distribution Features. Pattern Recognition Letters.  

  • Wang, M., Fu, Y., & Liu, H*. (2016). Nutritional quality and ions uptake to PTNDS in soybeans. Food Chemistry192, 750-759. 

  • Wang, M., Hui, L., Dong, C., Fu, Y., & Liu, H*. (2016). Elevated CO2 Enhance Photosynthetic Efficiency, Ions Uptake and Antioxidant Activity of Gynura bicolor DC. Grown Porous-Tube Nutrient Delivery System under Simulated Microgravity. Plant Biology.18(3), 391-399.  

  • Fu, Y., Li, L., Xie, B., Dong, C., Wang, M1., Jia, B., ... & Liu, G. (2016). How to Establish a Bioregenerative Life Support System for Long-Term Crewed Missions to the Moon or Mars? Astrobiology16(12), 925-936. 

  • Wang, M., Xie, B., Fu, Y., Dong, C., Hui, L., Liu, G. H & Liu, H*. (2015). Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem. Photosynthesis Research, 1-12.  

  • Wang, M., Fu, Y., & Liu, H*. (2015). Nutritional status and ion uptake response of Gynura bicolor DC. between Porous-tube and traditional hydroponic growth systems. Acta Astronautica, 113, 13-21. 

  • Wang, M., Dong, C., Fu, Y., & Liu, H*. (2015). Growth, morphological and photosynthetic characteristics, antioxidant capacity, biomass yield and water use efficiency of Gynura bicolor DC exposed to super-elevated CO2ACTA ASTRONAUTICA114, 138-146. 

  • Yu, J.1Wang, M1, Dong, C., Xie, B., Liu, G., Fu, Y., & Liu, H*. (2015). Analysis and evaluation of strawberry growth, photosynthetic characteristics, biomass yield and quality in an artificial closed ecosystem. SCIENTIA HORTICULTURAE195, 188-194. 

  • Dong, C.1, Shao, L.1Wang, M.1, Liu, G., Liu, H., Xie, B., ... & Liu, H*. (2015). Wheat Carbon Dioxide Responses in Space Simulations Conducted at the Chinese Lunar Palace-1. AGRONOMY JOURNAL.108(1), 32-38. 

  • 杨斯,高万林,米家奇,吴梦柳,王敏娟*,郑立华.基于RGB-D相机的蔬菜苗群体株高测量方法[J].农业机械学报, 2019, 50(S1):128-135.