1358
当前位置: 首页   >  成果及论文
成果及论文

Co-first author &Corresponding author*

1.      Yang QS&, Hu ZY&, Seo M-H, Xu YM, Yan Y, Hsu Y-H, Berkovich J, Lee K, Liu T-L, McDonald S, Nie HL, Oh H, Wu MZ, Kim J-T, Miller SA, Jia Y, Butun S, Bai WB, Guo HX, Choi J, Banks A, Ray WZ, Kozorovitskiy Y, Becker ML, Pet MA, MacEwan MR, Chang J-K, Wang HL*, Huang Y*, Rogers JA*. High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems. Nature Communications 13, p 6518, 2022.

2.      Ni XC&, Luan HW&, Kim J-T&, Rogge SI, Bai Y, Kwak JW, Liu SLZ, Yang DS, Li S, Li SP, Li ZW, Zhang YM, Wu CS, Ni XY*, Huang Y*Wang HL*, Rogers JA*. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. Nature Communications 13, p. 5576, 2022.

3.      Bai Y&Wang HL&, *, Xue YG, Pan YX, Kim J-T, Ni XC, Liu T-L, Yang YY, Han MD, Huang Y*, Rogers JA*, Ni XY*. A dynamically reprogrammable metasurface with self-evolving shape morphing. Nature 609, pp.701708, 2022.

4.      Wang HR, Wei C, Zhang Y, Ma YJ, Chen Y, Wang HL*, Feng X*. Tunable three-dimensional vibrational structures for concurrent determination of thin film modulus and density. Journal of Applied Mechanics-Transactions of the ASME 89, p. 031009, 2022.

5.      Zhao JZ&, Zhang F&, Guo XM, Huang Y*, Zhang YH*Wang HL*. Torsional deformation dominated buckling of serpentine structures to form three-dimensional architectures with ultra-low rigidity, Journal of the Mechanics and Physics of Solids 155, p.104568, 2021.

6.      Yuan XB, Won SM, Han MD, Yang YS, Rogers JA, Huang Y, Wang HL*. Mechanics of encapsulated three-dimensional structures for simultaneous sensing of pressure and shear stress, Journal of the Mechanics and Physics of Solids 151, p.104400, 2021.

7.      Zhao JZ&, Li WC&, Guo XM, Wang HL*, Rogers JA, Huang Y. Theoretical modeling of tunable vibrations of three-dimensional serpentine structures for simultaneous measurement of adherent cell mass and modulusMRS Bulletin 46pp.107114, 2021.

8.      Zhang F&, Li SP&, Shen ZM, Cheng X, Xue ZG, Zhang H, Song HL, Bai K, Yan DJ, Wang HL*, Zhang YH*, Huang Y*. Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices, Proceedings of the National Academy of Sciences of the United States of America 118, p.e2026414118, 2021.

9.      Zhao HB&, Kim Y&Wang HL&, Ning X&, Xu CK, Suh J, Han MD, Pagan-Diaz GJ, Lu W, Li HB, Bai WB, Aydin O, Park Y, Wang JJ, Yao Y, He YS, Saif TA, Huang Y*, Bashir R*, Rogers JA*. Compliant 3D frameworks instrumented with strain sensors for characterization of millimeter-scale engineered muscle tissues, Proceedings of the National Academy of Sciences of the United States of America 118, p.e2100077118, 2021.

10.   Kwon K&Wang HL&, Jaeman L, Keum SC, Jang H, Yoo I, Wu D, Chen AJ, Ge GC, Lipschultz L, Kim JU, Kim J, Jeong H, Park Y, Su C-J, Ishida Y, Madhvapathy SR, Ikoma A, Kwak JW, Yang DS, Banks A, Xu S, Huang Y, Chang J-K*, Rogers JA*,. Wireless, soft electronics for rapid, multisensor measurements of hydration levels in healthy and diseased skin, Proceedings of the National Academy of Sciences of the United States of America 118, p.e2020398118, 2021.

11.   Madhvapathy SR&Wang HL&, Kong J, Zhang M, Lee JY, Par JB, Jang H, Xie ZQ, Gao JY, Avila R, Wei C, D’Angelo V, Zhu J, Chung HK, Coughlin S, Patel M, Winograd J, Banks A, Xu S*, Huang Y*, Rogers JA*. Reliable, low-cost, fully integrated hydration sensors for monitoring and diagnosis of inflammatory skin diseases in any environment. Science Advances 6, p. eabd7146, 2020.

12.   Yan ZG, Wang BL, Wang KF, Zhao SW, Li SP, Huang Y, Wang HL*. Cellular substrate to facilitate global buckling of serpentine structures. Journal of Applied Mechanics- -Transactions of the ASME 87(2), 024501, 2020.

13.   Won SM&Wang HL&, Kim BH&, Lee HL&, Jang K, Kwon K, Han MD, Crawford KE, Li HB, Lee Y, Yuan XB, Kim SB, Oh YS, Jang WJ, Lee JY, Han S, Kim J, Wang XJ, Xie ZQ, Zhang YH, Huang Y, Rogers JA*Multimodal sensing with a three-dimensional piezoresistive structureACS Nano 13, pp.1097210979, 2019.

 

14.   Han MD&Wang HL&, Yang YY, Liang CM, Bai WB, Yan Z, Li HB, Xue YG, Wang XL, Akar B, Zhao HB, Luan HW, Lim J, Kandela I, Ameer GA, Zhang YH*, Huang Y*, Rogers JA*. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nature Electronics 2, pp.2635, 2019.

15.   Li SP, Han MD, Rogers JA, Zhang Y, Huang Y*Wang HL*. Mechanics of buckled serpentine structures formed via mechanics-guided, deterministic three-dimensional assembly. Journal of the Mechanics and Physics of Solids 125, pp.736748, 2019.

16.   Nan K&Wang HL&, Ning X&, Miller KA, Wei C, Liu YP, Li HB, Xue YG, Xie ZQ, Luan HW, Zhang Y, Huang Y*, Rogers JA*, Braun PV*. Soft three-dimensional microscale vibratory platforms for characterization of nano-thin polymer films. ACS Nano 13, pp.449457, 2018.

17.   Li HB, Wang X, Zhu F, Ning X, Wang HL*, Rogers JA, Zhang Y, Huang Y. Viscoelastic characteristics of mechanically assembled three-dimensional structures formed by compressive buckling. Journal of Applied Mechanics-Transactions of the ASME 85, p. 121002, 2018.

18.   Ning X&, Yu XG&Wang HL&, Sun RJ, Corman RE, Li HB, Lee CM, Xue YG, Chempakasseril A, Yao Y, Zhang ZQ, Luan HW, Wang ZZ, Xia W, Feng X, Ewoldt RH, Huang Y, Zhang YH*, Rogers JA*. Mechanically active materials in three-dimensional mesostructures. Science Advances 4(9), p.eaat8313, 2018.

19.   Wang HL, Ning X, Li HB, Luan HW, Xue YG, Yu XG, Fan ZC, Li LM, Rogers JA, Zhang YH*, Huang Y*. Vibration of mechanically-assembled 3D microstructures formed by compressive buckling. Journal of the Mechanics and Physics of Solids 112, pp.187208, 2018.

20.   Yu XG&Wang HL&, Ning X&,Sun RJ, Albadawi H, Salomao M, Silva AC, Yu Y, Tian LM, Koh A, Lee CM, Chempakasseril A, Tian P, Pharr M, Yuan JH, Huang Y*, Oklu R*, Rogers JA*. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nature Biomedical Engineering 2, pp.165172, 2018.

21.   Wang HL*, Jiang D-J, Zhang L-Y, Liu B*. How to realize volume conservation during finite plastic deformation. Journal of Applied Mechanics-Transactions of the ASME 84, p. 111009, 2017.

22.   Ning X&Wang HL&, Yu XG&, Soares JA, Yan Z, Nan KW, Velarde G, Xue YG, Sun RJ, Dong QY, Luan HW, Lee CM, Chempakasseril A, Han MD, Wang YQ, Li LM, Huang Y, Zhang YH*, Rogers JA*. 3D Tunable, Multiscale, and Multistable Vibrational Micro-Platforms Assembled by Compressive Buckling. Advanced Functional Materials 27, p.1605914, 2017.

23.   Lei H-J, Wang HL*, Liu B*, Wang C-A. Quantitative law of diffusion induced fracture. Acta Mechanica Sinica 32, pp. 611632, 2016.

24.   Xiao S, Wang HL*, Liu B*, Hwang KC. The surface-forming energy release rate based fracture criterion for elastic–plastic crack propagation. Journal of the Mechanics and Physics of Solids 84, pp.336357, 2016.

25.   Tong Q, Wang HL*, Xu R, Liu B*, Fang DN. Adaptive periodical representative volume element for simulating periodical postbuckling behavior. International Journal for Numerical Methods in Engineering 98, pp.445468, 2014.

26.   Wang HL, Liu B*. The theoretical ultimate magnetoelectric coefficients of magnetoelectric composites by optimization design. Journal of Applied Physics 115, p.114904, 2014.

27.   Wang HL, Liu B*, Fang DN. A nonlinear finite element method for magnetoelectric composite and the study on the influence of interfacial bonding. Mathematical Problems in Engineering, p. 197940, 2013.

28.   Yang QS et al. Ecoresorbable and bioresorbable microelectromechanical systems. Nature Electronics 5, 526–538, 2022.

29.   Wang HR et al. Mechanics design of conical spiral structure for flexible coilable antenna array. International Journal of Aerospace Engineering 2022, 2022.

30.   Meng YF et al. Direct-current generators based on conductive polymers for self-powered flexible devices. Scientific Reports 11(1), 110, 2021.

31.   Li SP et al. Measurement of blood pressure via a skin-mounted, non-invasive pressure sensor. Journal of Applied Mechanics-Transactions of the ASME 88 (10), 101101, 2021.

32.   Luan HW et al. Complex 3D microfluidic architectures formed by mechanically guided compressive buckling. Science Advances 7(43), eabj3686, 2021.

33.   Park Y. et al. Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Science Advances 7(12), eabf9153, 2021.

34.   Li HB. et al. The nonlocal multi-directional vibration behaviors of buckled viscoelastic nanoribbons. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234(18), 35713583, 2020.

35.   Krishnan SR et alContinuous, noninvasive wireless monitoring of flow of cerebrospinal fluid through shunts in patients with hydrocephalus. NPJ Digital Medicine 3(1), pp.111, 2020.

36.   Wang X, et al. Three-dimensional electronic scaffolds for monitoring and regulation of multifunctional hybrid tissues. Extreme Mechanics Letters 35, p.100634, 2020.

37.   Li HB, et al. The nonlocal frequency behavior of nanomechanical mass sensors based on the multi-directional vibrations of a buckled nanoribbon. Applied Mathematical Modelling 77, pp.17801796, 2020.

38.   Koo J, et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Science Advances 6(35), eabb1093, 2020.

39.   Jia Y, et al. Intrinsic-to-extrinsic transition in fracture toughness through structural design: A lesson from nature. Extreme Mechanics Letters 37, 100685, 2020.

40.   Park JK et al. Remotely triggered assembly of 3d mesostructures through shape-memory effects. Advanced Materials 31(52), p.1905715, 2019.

41.   Park Y, et al. Transformable, freestanding 3d mesostructures based on transient materials and mechanical interlocking. Advanced Functional Materials 29(40), p.1903181, 2019.

42.   Zhao H, et al. Buckling and twisting of advanced materials into morphable 3D mesostructures. Proceedings of the National Academy of Sciences 116(27), pp.1323913248, 2019.

43.   Li K, et al. A generic soft encapsulation strategy for stretchable electronics. Advanced Functional Materials 29(8), p.1806630, 2019.

44.   Luan H, et al. Design and fabrication of heterogeneous, deformable substrates for the mechanically guided 3D assembly. ACS Applied Materials & Interfaces 11(3), pp.34823492, 2018.

45.   Nan K, et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Science Advances 4(11), p. eaau5849, 2018.

46.   Krishnan SR, et al. Wireless, batteryfree epidermal electronics for continuous, quantitative, multimodal thermal characterization of skin. Small 14(47), p.1803192, 2018.

47.   Ma Y, et al. Relation between blood pressure and pulse wave velocity for human arteries. Proceedings of the National Academy of Sciences 115(44), pp.1114411149, 2018.

48.   Xiao S, et al. The surface-forming energy release rate versus the local energy release rate. Engineering Fracture Mechanics 175, pp.86100, 2017.

49.   Zhao JM, et al. Two objective and independent fracture parameters for interface cracks. Journal of Applied Mechanics-Transactions of the ASME 84(4), 041006, 2017.

50.   Chen HS, et al. Crack instability of ferroelectric solids under alternative electric loading. Journal of the Mechanics and Physics of Solids 81, pp.7590, 2015.

51.   Wu D, et al. Dynamic buckling behavior of thin metal film lines from substrate. Journal of Micromechanics and Microengineering 24(10), p.105008, 2014.