36. Multivalent Ion-Modulated Electron Transfer Processes in Carbon Nanopipettes
Yue Wang, Rujia Liu, Xiaoyue Shen, Dengchao Wang*
J. Phys. Chem. Lett. 2022, 13, 11369–11374
https://doi.org/10.1021/acs.jpclett.2c03322
35. Electrodeposition of Metal Nanoparticles inside Carbon Nanopipettes for Sensing Applications
Yuhuan Wang, Rujia Liu, Yingfei Ma, Xiaoyue Shen, Dengchao Wang*
Anal. Chem. 2022, 94, 49, 16987–16991
https://doi.org/10.1021/acs.analchem.2c04449
34. Spatial Analysis of Reactive Oxygen Species in a 3D Cell Model Using a Sensitive Nanocavity Electrode
Kang Liu, Rujia Liu, Dengchao Wang, Rongrong Pan*, Hong-Yuan Chen, and Dechen Jiang*
Anal. Chem. 2022, 94, 13287–13292
https://doi.org/10.1021/acs.analchem.2c03444
33. Corrigendum to “The high sensitive and selective detection of dopamine based on its electropolymerization by electrochemical surface plasmon resonance”
Ruihuan Zhao, Dongxiao Li, Nan Yin, Zhimin Guo, Dengchao Wang*, XinYao*
Sensors & Actuators: B. Chemical, 2022, 373, 132692
https://doi.org/10.1016/j.snb.2022.132692
32. The high sensitive and selective detection of dopamine based on its electropolymerization by electrochemical surface plasmon resonance
Ruihuan Zhao, Dongxiao Li, Nan Yin, Zhimin Guo, Dengchao Wang*, XinYao*
Sensors & Actuators: B. Chemical, 2022 ,370,132401
https://doi.org/10.1016/j.snb.2022.132401
31. Electrochemical Molecule Trap-Based Sensing of Low-Abundance Enzymes in One Living Cell
Rongrong Pan*, Dengchao Wang, Kang Liu, Hong-Yuan Chen, and Dechen Jiang*
J. Am. Chem. Soc. 2022, 144, 17558–17566
https://doi.org/10.1021/jacs.2c06962
30. Scanning Electrochemical Microscopy Featuring Transient Current Signals in Carbon Nanopipets with Dilute or No Redox Mediator
Yingfei Ma, Yingjie Zhao, Rujia Liu, Dengchao Wang*
Anal. Chem. 2022, 94, 11124–11128
https://doi.org/10.1021/acs.analchem.2c02596
29. Nanoconfined Electrochemical Collision and Catalysis of Single Enzyme inside Carbon Nanopipettes
Xiaoyue Shen, Rujia Liu, Dengchao Wang*
Anal. Chem. 2022, 94, 8110–8114
https://doi.org/10.1021/acs.analchem.2c01554
28. Pressure-Regulated Single-Entity Electrochemistry Inside Carbon Nanopipettes
Rujia Liu, Dengchao Wang*
ACS Sens. 2022, 7, 1138–1144
https://doi.org/10.1021/acssensors.2c00143
27. Revealing Electrical Double-Layer Potential of Substrates by Hysteresis Ion Transport in Scanning Ion Conductance Microscopy
Yingfei Ma, Dengchao Wang*
Anal. Chem. 2021, 93, 15821–15825
https://doi.org/10.1021/acs.analchem.1c04486
26. Quantification of Asymmetric Ion Transport in Glass Nanopipettes near Charged Substrates
Yingfei Ma, Rujia Liu, Xiaoyue Shen, Dengchao Wang*
ChemElectroChem, 2021, 8, 3917– 3922
https://doi.org/10.1002/celc.202101180
25. Self-Referenced Nanopipette for Electrochemical Analysis of Hydrogen Peroxide in the Nucleus of a Single Living Cell
Nina Wang, Dongni Wang, Rongrong Pan, Dengchao Wang*, Dechen Jiang*, and Hong-Yuan Chen
Anal. Chem. 2021, 93, 10744–10749
https://doi.org/10.1021/acs.analchem.0c05025
24. Quantification of the charge transport processes inside carbon nanopipettes
Rujia Liu, Yingfei Ma, Xiaoyue Shen, Dengchao Wang*
Chem. Sci., 2021,12, 14752-14757.
https://doi.org/10.1039/D1SC04282C
23. Electrochemical collision of single graphene oxide sheets at ultramicroelectrodes and its usage as substrate for Pt nanoparticle deposition
Xiaoyue Shen, Dengchao Wang*
Electrochem. Sci. Adv., 2022, 2:e2100069.
https://doi.org/10.1002/elsa.202100069
22. Electrochemical Collision of Single Silver Nanoparticles in Carbon Nanopipettes
Rujia Liu, Xiaoyue Shen, Dengchao Wang*
Anal. Chem. 2021, 93, 7394–7398.
https://doi.org/10.1021/acs.analchem.1c01382
21. Direct Mapping of Electrocatalytic Activity of Semi-two-dimensional catalysts with Sub-10 nm Spatial Resolution and Single-Edge Sensitivity
Tong Sun#, Dengchao Wang#, Hao Cheng, Ryan M. Richards, Feng Lin, Jin-Cheng Zheng, Michael V. Mirkin*, Huolin Xin*
Proc. Nat. Acad. Sci. 2019, 116, 11618-11623.
https://www.pnas.org/content/116/24/11618.short
20. Surface Charge Effects on Voltammetry in Carbon Nanocavities
JeHyun Bae, Dengchao Wang, Keke Hu, Michael V. Mirkin*
Anal. Chem. 2019, 91, 5530-5536.
https://pubs.acs.org/doi/10.1021/acs.analchem.9b00426
19. Ultrasensitive Detection of Dopamine with Carbon Nanopipets
Keke Hu, Dengchao Wang, Min Zhou, JeHyun Bae, Yun Yu, Huolin Xin, Michael V. Mirkin*
Anal. Chem. 2019, 91, 12935-12941.
https://pubs.acs.org/doi/10.1021/acs.analchem.9b02994
18. Cavity Carbon-Nanopipette Electrodes for Dopamine Detection
Cheng Yang, Keke Hu, Dengchao Wang, Yasmine Zubi, Scott T. Lee, Pumidech Puthongkham, Michael V. Mirkin, B. Jill Venton*
Anal. Chem. 2019, 91, 4618-4624.
https://pubs.acs.org/doi/10.1021/acs.analchem.8b05885
17. Hysteresis Charges in the Dynamic Enrichment and Depletion of Ions in Single Conical Nanopores
Dengchao Wang, Warren Brown, Yan Li, Maksim Kvetny, Juan Liu, Gangli Wang*
ChemElectroChem 2018, 5, 3089-3095.
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.201800571
16. Tunneling Mode of Scanning Electrochemical Microscopy: Probing Electrochemical Processes at Single Nanoparticles
Tong Sun, Dengchao Wang, Michael V. Mirkin*.
Angew. Chem. Int. Ed. 2018, 57, 7463-7467.
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201801115
15. Electrochemical Evaluation of the Number of Au Atoms in Polymeric Gold Thiolates by Single Particle Collisions
Min Zhou, Dengchao Wang, Michael V. Mirkin*
Anal. Chem. 2018, 90, 8285-8289.
https://pubs.acs.org/doi/10.1021/acs.analchem.7b05333
14. Toward the Detection and Identification of Single Bacteria by Electrochemical Collision Technique
Guanyue Gao, Dengchao Wang, Ricardo Brocenschi, Jinfang Zhi, Michael V. Mirkin*
Anal. Chem. 2018, 90, 12123-12130.
https://pubs.acs.org/doi/10.1021/acs.analchem.8b03043
13. Electron-Transfer Gated Ion Transport in Carbon Nanopipettes
Dengchao Wang, Michael V. Mirkin*
J. Am. Chem. Soc. 2017, 139, 11654-11657.
https://pubs.acs.org/doi/10.1021/jacs.7b05058
12. Correlation of Ion Transport Hysteresis with the Nanogeometry and Surface Factors in Singe Conical Nanopores
Dengchao Wang, Warren Brown, Yan Li, Maksim Kvetny, Juan Liu, Gangli Wang*
Anal. Chem. 2017, 89, 11811-11817.
https://pubs.acs.org/doi/10.1021/acs.analchem.7b03477
11. Near-Infrared Electrogenerated Chemiluminescence from Aqueous Soluble Lipoic Acid Au Nanoclusters
Tanyu Wang, Dengchao Wang, Jonathan W. Padelford, Jie Jiang, Gangli Wang*
J. Am. Chem. Soc. 2016, 138, 6380-6383.
https://pubs.acs.org/doi/abs/10.1021/jacs.6b03037
10. Kinetics of Quantized Charging of Au144 Nanoclusters
Dengchao Wang, Yun Yu, Tong Sun, Michael V. Mirkin*
Electroanalysis 2016, 28, 2288-2292.
https://onlinelibrary.wiley.com/doi/abs/10.1002/elan.201600299
9. Dynamics of Ion Transport and Electric Double Layer in Single Conical Nanopores
Dengchao Wang, and Gangli Wang*
J. Electroanal. Chem., 2016, 779, 39-46.
https://www.sciencedirect.com/science/article/pii/S1572665716302442
8. Transitions in Discrete Absorption Bands of Au130 Clusters upon Stepwise Charging by Spectroelectrochemistry
Dengchao Wang, Jonathan W Padelford, Tarushee Ahuja, Gangli Wang*
ACS Nano, 2015, 9, 8344-8351.
https://pubs.acs.org/doi/abs/10.1021/acsnano.5b03007
7. Electronic Coupling Between Ligand and Core Energy States in Dithiolate-Monothiolate Stabilized Au Clusters
Ahuja, Tarushee#, Dengchao Wang#, Zhenghua Tang, Donald A. Robinson, Jonathan W. Padelford, Gangli Wang*
Phys. Chem. Chem. Phys. 2015, 17, 19342-19349.
https://pubs.rsc.org/en/content/articlelanding/2015/CP/C5CP02685G#!divAbstract
6. History-Dependent Ion Transport through Conical Nanopipettes and the Implications in Energy Conversion Dynamics at Nanoscale Interfaces
Yan Li, Dengchao Wang, Maksim Kvetny, Warren Brown, Juan Liu, Gangli Wang*
Chem. Sci. 2015, 6, 588-595.
https://pubs.rsc.org/en/content/articlehtml/2015/SC/C4SC02195A
5. Physical Origin of Dynamic Ion Transport Features through Single Conical Nanopores at Different Bias Frequencies
Dengchao Wang, Juan Liu, Maksim Kvetny, Warren Brown, Yan Li, Gangli Wang*
Chem. Sci. 2014, 5, 1827-1832.
https://pubs.rsc.org/en/content/articlelanding/2014/SC/c3sc52187g#!divAbstract
4. Quantification of Steady-State Ion Transport through Single Conical Nanopores and A Nonuniform Distribution of Surface Charges
Juan Liu, Dengchao Wang, Maksim Kvetny, Warren Brown, Yan Li, Gangli Wang*
Langmuir 2013, 29, 8743-8752.
https://pubs.acs.org/doi/pdf/10.1021/la4009009
3. Noninvasive Surface Coverage Determination of Chemically Modified Conical Nanopores That Rectify Ion Transport
Juan Liu, Dengchao Wang, Maksim Kvetny, Warren Brown, Yan Li, Gangli Wang*
Anal. Chem. 2012, 84, 6926-6929.
https://pubs.acs.org/doi/pdf/10.1021/ac301791e
2. Transmembrane Potential Across Single Conical Nanopores and Resulting Memristive and Memcapacitive Ion Transport
Dengchao Wang, Maksim Kvetny, Juan Liu, Warren Brown, Yan Li, Gangli Wang*
J. Am. Chem. Soc. 2012, 134, 3651-3654.
https://pubs.acs.org/doi/abs/10.1021/ja211142e
1. Preparation of Mesoporous NiO with A Bimodal Pore Size Distribution and Application in Electrochemical Capacitors
Dengchao Wang, Wenbin Ni, Huan Pang, Zhongjie Huang, Jianwei Zhao*
Electrochimica Acta 2010, 55, 6830-6835.
https://www.sciencedirect.com/science/article/pii/S0013468610007863