11969
当前位置: 首页   >  成果及论文
成果及论文

36.  Multivalent Ion-Modulated Electron Transfer Processes in Carbon Nanopipettes

Yue Wang, Rujia Liu, Xiaoyue Shen, Dengchao Wang*

J. Phys. Chem. Lett. 2022, 13, 11369–11374

https://doi.org/10.1021/acs.jpclett.2c03322

Abstract Image

35.  Electrodeposition of Metal Nanoparticles inside Carbon Nanopipettes for Sensing Applications

Yuhuan Wang, Rujia Liu, Yingfei Ma, Xiaoyue Shen, Dengchao Wang*

Anal. Chem. 2022, 94, 49, 16987–16991

https://doi.org/10.1021/acs.analchem.2c04449


34. Spatial Analysis of Reactive Oxygen Species in a 3D Cell Model Using a Sensitive Nanocavity Electrode

Kang Liu, Rujia Liu, Dengchao Wang, Rongrong Pan*, Hong-Yuan Chen, and Dechen Jiang*

Anal. Chem. 2022, 94, 13287–13292

https://doi.org/10.1021/acs.analchem.2c03444

Abstract Image


33. Corrigendum to “The high sensitive and selective detection of dopamine based on its electropolymerization by electrochemical surface plasmon resonance”

Ruihuan Zhao, Dongxiao Li, Nan Yin, Zhimin Guo, Dengchao Wang*, XinYao*

Sensors & Actuators: B. Chemical, 2022, 373, 132692

https://doi.org/10.1016/j.snb.2022.132692


32. The high sensitive and selective detection of dopamine based on its electropolymerization by electrochemical surface plasmon resonance

Ruihuan Zhao, Dongxiao Li, Nan Yin, Zhimin Guo, Dengchao Wang*, XinYao*

Sensors & Actuators: B. Chemical2022 ,370,132401

https://doi.org/10.1016/j.snb.2022.132401



31. Electrochemical Molecule Trap-Based Sensing of Low-Abundance Enzymes in One Living Cell

Rongrong Pan*, Dengchao Wang, Kang Liu, Hong-Yuan Chen, and Dechen Jiang*

J. Am. Chem. Soc. 2022, 144, 17558–17566

https://doi.org/10.1021/jacs.2c06962

Abstract Image


30. Scanning Electrochemical Microscopy Featuring Transient Current Signals in Carbon Nanopipets with Dilute or No Redox Mediator

Yingfei Ma, Yingjie Zhao, Rujia Liu, Dengchao Wang*

Anal. Chem. 2022, 94, 11124–11128

https://doi.org/10.1021/acs.analchem.2c02596


29. Nanoconfined Electrochemical Collision and Catalysis of Single Enzyme inside Carbon Nanopipettes

Xiaoyue Shen, Rujia Liu, Dengchao Wang*

Anal. Chem. 2022, 94, 8110–8114

https://doi.org/10.1021/acs.analchem.2c01554


28.  Pressure-Regulated Single-Entity Electrochemistry Inside Carbon Nanopipettes

Rujia Liu, Dengchao Wang*

ACS Sens. 2022, 7, 1138–1144

https://doi.org/10.1021/acssensors.2c00143

Abstract Image


27. Revealing Electrical Double-Layer Potential of Substrates by Hysteresis Ion Transport in Scanning Ion Conductance Microscopy

Yingfei Ma, Dengchao Wang*

Anal. Chem. 2021, 93, 15821–15825

https://doi.org/10.1021/acs.analchem.1c04486



26.  Quantification of Asymmetric Ion Transport in Glass Nanopipettes near Charged Substrates

Yingfei Ma, Rujia Liu, Xiaoyue Shen, Dengchao Wang*

ChemElectroChem, 20218,  3917– 3922

https://doi.org/10.1002/celc.202101180

Description unavailable


25.  Self-Referenced Nanopipette for Electrochemical Analysis of Hydrogen Peroxide in the Nucleus of a Single Living Cell

Nina Wang, Dongni Wang, Rongrong Pan, Dengchao Wang*, Dechen Jiang*, and Hong-Yuan Chen

Anal. Chem. 2021, 93, 10744–10749

https://doi.org/10.1021/acs.analchem.0c05025

Abstract Image


24. Quantification of the charge transport processes inside carbon nanopipettes

Rujia Liu, Yingfei Ma, Xiaoyue Shen, Dengchao Wang*

Chem. Sci., 2021,12, 14752-14757.

 https://doi.org/10.1039/D1SC04282C

Graphical abstract: Quantification of the charge transport processes inside carbon nanopipettes


23.   Electrochemical collision of single graphene oxide sheets at ultramicroelectrodes and its usage as substrate for Pt nanoparticle deposition

Xiaoyue Shen, Dengchao Wang*

Electrochem. Sci. Adv., 2022, 2:e2100069.

https://doi.org/10.1002/elsa.202100069


 22.  Electrochemical Collision of Single Silver Nanoparticles in Carbon Nanopipettes

Rujia Liu, Xiaoyue Shen, Dengchao Wang*

Anal. Chem. 2021, 93, 7394–7398.

 https://doi.org/10.1021/acs.analchem.1c01382

Figure 1


21.     Direct Mapping of Electrocatalytic Activity of Semi-two-dimensional catalysts with Sub-10 nm Spatial Resolution and Single-Edge Sensitivity

Tong Sun#Dengchao Wang#Hao Cheng, Ryan M. Richards, Feng Lin, Jin-Cheng Zheng, Michael V. Mirkin*, Huolin Xin*

Proc. Nat. Acad. Sci. 2019116, 11618-11623.

 https://www.pnas.org/content/116/24/11618.short

 

 

20.     Surface Charge Effects on Voltammetry in Carbon Nanocavities

JeHyun Bae, Dengchao Wang, Keke Hu, Michael V. Mirkin*

Anal. Chem201991, 5530-5536.

https://pubs.acs.org/doi/10.1021/acs.analchem.9b00426

 

19.     Ultrasensitive Detection of Dopamine with Carbon Nanopipets 

Keke Hu, Dengchao Wang, Min Zhou, JeHyun Bae, Yun Yu, Huolin Xin, Michael V. Mirkin*

Anal. Chem. 201991, 12935-12941.

https://pubs.acs.org/doi/10.1021/acs.analchem.9b02994

18.     Cavity Carbon-Nanopipette Electrodes for Dopamine Detection

Cheng Yang, Keke Hu, Dengchao Wang, Yasmine Zubi, Scott T. Lee, Pumidech Puthongkham, Michael V. Mirkin, B. Jill Venton* 

Anal. Chem. 201991, 4618-4624.

https://pubs.acs.org/doi/10.1021/acs.analchem.8b05885

 

17.     Hysteresis Charges in the Dynamic Enrichment and Depletion of Ions in Single Conical Nanopores

Dengchao Wang, Warren Brown, Yan Li, Maksim Kvetny, Juan Liu, Gangli Wang*

ChemElectroChem 20185, 3089-3095.

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.201800571

 

16.     Tunneling Mode of Scanning Electrochemical Microscopy: Probing Electrochemical Processes at Single Nanoparticles 

Tong Sun, Dengchao Wang, Michael V. Mirkin*. 

Angew. Chem. Int. Ed. 201857, 7463-7467.

https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201801115

15.     Electrochemical Evaluation of the Number of Au Atoms in Polymeric Gold Thiolates by Single Particle Collisions

Min Zhou, Dengchao Wang, Michael V. Mirkin* 

Anal. Chem201890, 8285-8289

https://pubs.acs.org/doi/10.1021/acs.analchem.7b05333

 

14.     Toward the Detection and Identification of Single Bacteria by Electrochemical Collision Technique 

Guanyue Gao, Dengchao Wang, Ricardo Brocenschi, Jinfang Zhi, Michael V. Mirkin* 

Anal. Chem201890, 12123-12130.

https://pubs.acs.org/doi/10.1021/acs.analchem.8b03043

 

13.     Electron-Transfer Gated Ion Transport in Carbon Nanopipettes

Dengchao Wang, Michael V. Mirkin* 

J. Am. Chem. Soc. 2017, 139, 11654-11657.

https://pubs.acs.org/doi/10.1021/jacs.7b05058


12.  Correlation of Ion Transport Hysteresis with the Nanogeometry and Surface Factors in Singe Conical Nanopores

Dengchao Wang, Warren Brown, Yan Li, Maksim Kvetny, Juan Liu, Gangli Wang* 

Anal. Chem. 201789, 11811-11817. 

https://pubs.acs.org/doi/10.1021/acs.analchem.7b03477

 

11.  Near-Infrared Electrogenerated Chemiluminescence from Aqueous Soluble Lipoic Acid Au Nanoclusters

Tanyu Wang, Dengchao Wang, Jonathan W. Padelford, Jie Jiang, Gangli Wang* 

J. Am. Chem. Soc2016138, 6380-6383.

https://pubs.acs.org/doi/abs/10.1021/jacs.6b03037

 

10.  Kinetics of Quantized Charging of Au144 Nanoclusters

Dengchao Wang, Yun Yu, Tong Sun, Michael V. Mirkin* 

Electroanalysis 201628, 2288-2292.

https://onlinelibrary.wiley.com/doi/abs/10.1002/elan.201600299


9.  Dynamics of Ion Transport and Electric Double Layer in Single Conical Nanopores

Dengchao Wang, and Gangli Wang* 

J. Electroanal. Chem.2016779, 39-46.

https://www.sciencedirect.com/science/article/pii/S1572665716302442

 

8.  Transitions in Discrete Absorption Bands of Au130 Clusters upon Stepwise Charging by Spectroelectrochemistry

Dengchao Wang, Jonathan W Padelford, Tarushee Ahuja, Gangli Wang*

ACS Nano, 20159, 8344-8351.

https://pubs.acs.org/doi/abs/10.1021/acsnano.5b03007

 

7.  Electronic Coupling Between Ligand and Core Energy States in Dithiolate-Monothiolate Stabilized Au Clusters

Ahuja, Tarushee#Dengchao Wang#, Zhenghua Tang, Donald A. Robinson, Jonathan W. Padelford, Gangli Wang* 

Phys. Chem. Chem. Phys. 2015, 17, 19342-19349.

https://pubs.rsc.org/en/content/articlelanding/2015/CP/C5CP02685G#!divAbstract

 

6.  History-Dependent Ion Transport through Conical Nanopipettes and the Implications in Energy Conversion Dynamics at Nanoscale Interfaces

Yan Li, Dengchao Wang, Maksim Kvetny, Warren Brown, Juan Liu, Gangli Wang* 

Chem. Sci. 20156, 588-595.

https://pubs.rsc.org/en/content/articlehtml/2015/SC/C4SC02195A

 

5.  Physical Origin of Dynamic Ion Transport Features through Single Conical Nanopores at Different Bias Frequencies

Dengchao Wang, Juan Liu, Maksim Kvetny, Warren Brown, Yan Li, Gangli Wang* 

Chem. Sci. 20145, 1827-1832.

https://pubs.rsc.org/en/content/articlelanding/2014/SC/c3sc52187g#!divAbstract

 

4.  Quantification of Steady-State Ion Transport through Single Conical Nanopores and A Nonuniform Distribution of Surface Charges

Juan Liu, Dengchao Wang, Maksim Kvetny, Warren Brown, Yan Li, Gangli Wang*

Langmuir 201329, 8743-8752. 

https://pubs.acs.org/doi/pdf/10.1021/la4009009

 

3.  Noninvasive Surface Coverage Determination of Chemically Modified Conical Nanopores That Rectify Ion Transport

Juan Liu, Dengchao Wang, Maksim Kvetny, Warren Brown, Yan Li, Gangli Wang* 

Anal. Chem. 201284, 6926-6929. 

https://pubs.acs.org/doi/pdf/10.1021/ac301791e

 

2.  Transmembrane Potential Across Single Conical Nanopores and Resulting Memristive and Memcapacitive Ion Transport

Dengchao Wang, Maksim Kvetny, Juan Liu, Warren Brown, Yan Li, Gangli Wang*

J. Am. Chem. Soc. 2012134, 3651-3654.

https://pubs.acs.org/doi/abs/10.1021/ja211142e

 

1.  Preparation of Mesoporous NiO with A Bimodal Pore Size Distribution and Application in Electrochemical Capacitors

Dengchao Wang, Wenbin Ni, Huan Pang, Zhongjie Huang, Jianwei Zhao*

Electrochimica Acta 201055, 6830-6835.

https://www.sciencedirect.com/science/article/pii/S0013468610007863