12867
当前位置: 首页   >  成果及论文
成果及论文

1. Xie, P.,#, Liu, J.,#, Liao, Z., Zhou, Q., Sun, J., Liu, Z.,*, Xiong, H.,*, Wan, H*Profiling the differential phosphoproteome between breast milk and infant formula through a titanium (IV)-immobilized magnetic nanoplatform. Food Chemistry, 2025, 464, 141541. DOI: 10.1016/j.foodchem.2024.141541.

2. Wan, X., Zhang, Y., Wan, Y.*, Xiong, M., Xie, A., Liang, Y.*, Wan, H*. A Multifunctional Biomimetic Nanoplatform for Dual Tumor Targeting-Assisted Multimodal Therapy of Colon Cancer. ACS Nano, 2024, 18(39), 26666-26689. DOI: 10.1021/acsnano.4c05773.

3. Xiong, M.#, Zhang, Y.#, Zhang, H.#, Shao, Q.#, Hu, Q.#, Ma, J., Wan, Y.,  Guo, L.*, Wan, X., Sun, H., Yuan, Z.*, Wan, H*. A Tumor Environment-Activated PhotosensitizedBiomimetic Nanoplatform for Precise PhotodynamicImmunotherapy of Colon Cancer. Advanced Science, 2024,11(28), 2402465. DOI: 10.1002/advs.202402465.

4. Xie, A., Wan, H., Feng, L.*, Yang, B., Wan, Y*. Protective Effect of Anoectochilus formosanus Polysaccharide against Cyclophosphamide-Induced Immunosuppression in BALB/c Mice. Foods, 2023, 12(9), 1910. DOI: 10.3390/foods12091910.

5. Wang, X.#, Jiao, M.#, Tian, F., Lu, X., Xiong, H., Liu, F., Wan, Y.*, Zhang, X.*, Wan, H*. A Biomimetic Nanoplatform with Improved Inflammatory Targeting Behavior for ROS Scavenging-Based Treatment of Ulcerative Colitis (Cover paper)Advanced Healthcare Materials, 2023, 12(29), 2301450. DOI: 10.1002/adhm.202301450.

6. Xie, A.#, Ji, H.#, Liu, Z.#, Wan, Y.*, Zhang, X., Xiong, H., Nie, S.*, Wan, H*. Modified Prebiotic-Based “Shield” Armed Probiotics with Enhanced Resistance of Gastrointestinal Stresses and Prolonged Intestinal Retention for Synergistic Alleviation of Colitis. ACS Nano,  2023, 17(15), 14775-14791, DOI: 10.1021/acsnano.3c02914.

7. Xiong, H., Wan, Y., Fan, Y., Xu, M., Yan, A., Zhang, Y., Jiang, Q., Wan, H*. Reshaping the imprinting strategy through the thermo-responsive moiety-derived “deep eutectic solvents” effect. Chinese Chemical Letters, 2024, 35(1), 108382. DOI: 10.1016/j.cclet.2023.108382.

8. Xiong, H., Fan, Y., Mao, X., Guo, L., Yan, A., Guo, X., Wan, Y., Wan, H*. Thermosensitive and magnetic molecularly imprinted polymers for selective recognition and extraction of aristolochic acid I. Food Chemistry, 2022, 372, 131250. DOI: 10.1016/j.foodchem.2021.131250.

9. Xiong, H., Guo, L., Mao, X., Tan, T., Wan, H*, Wan, Y. A magnetic hydrophilic molecularly imprinted material with multiple stimuli-response properties for efficient recognition of bisphenol A in beverages. Food Chemistry, 2020, 331, 127311. DOI: 10.1016/j.foodchem.2020.127311.

10. Wang, F., Wan, H# (co-first author). et al. Light sheet microscopy in the near-infrared II window. Nature Methods, 2019, 16, 545-552. DOI: 10.1038/s41592-019-0398-7.

11. Wan, H. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nature Communications, 2018, 9, 1171. DOI: 10.1038/s41467-018-03505-4.

12. Wan, H. et al. Molecular imaging in the second near-infrared window. Advanced Functional Materials, 2019, 1900566. DOI: 10.1002/adfm.201900566.

13. Wan, H. et al. Proteoliposome-based full-length ZnT8 self-antigen for type 1 diabetes diagnosis on a plasmonic platform. Proceedings of the National Academy of Sciences, 2017, 114, 10196-10201. DOI: 10.1073/pnas.1711169114.

14. Wan, H. et al. Developing a bright NIR-II fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1. Advanced Functional Materials, 2018, 28, 1804956. DOI: 10.1002/adfm.201804956.

15. Wan, H. et al. Facile synthesis of yolk-shell magnetic mesoporous carbon microspheres for efficient enrichment of low abundance peptides. Nanoscale2013, 5, 10936-10944. DOI: 10.1039/c3nr02932h.

16. Wan, H. et al. Facile fabrication of a near-infrared responsive nanocarrier for spatiotemporally NIR controlled chemo-photothermal synergistic cancer therapy. Nanoscale, 2014, 6, 8743-8753. DOI: 10.1039/c4nr01044b.

17. Wan, H. et al. A dendrimer-assisted magnetic grahene-silica hydrophilic composite for efficient and selective enrichment of glycopeptides from the complex sample. Chemical Communications, 2015, 51, 9301-9394. DOI: 10.1039/c5cc01980j.

18. Wan, H. et al. Robust two-photon visualized nanocarrier with the dual targeting ability for controlled chemo-photodynamic synergistic treatment of cancer. ACS Applied Materials & Interfaces, 2015, 7, 9608-9618. DOI: 10.1021/acsami.5b01165.

19. Wan, H. et al. Fabrication of a novel magnetic yolk–shell Fe3O4@mTiO2@mSiO2 nanocomposite for selective enrichment of endogenous phosphopeptides from a complex sample. RSC Advances2014, 4, 45804-45808. DOI: 10.1039/c4ra08692a.

20. Ma, Z., Wan, H#. (co-first author), et al. A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Research, 2019, 12, 273-279.  DOI: 10.1007/s12274-018-2210-x.

21. Huang, J., Wan, H#. (co-first author), et al. Highly efficient release of glycopeptides from hydrazide beads by a hydroxylamine assisted PNGase F deglycosylation for N-glycoproteome analysis. Analytical Chemistry2015, 87, 10199-10204. DOI: 10.1021/acs.analchem.5b02669.

22. Tian, R., Ma, H., Yang, Q., Wan, H#. (co-first author), et al. Rational design of super-contrast NIR-II fluorophore affords high- performance NIR-II molecular imaging guided microsurgery. Chemical Science, 2019, 10, 326DOI: 10.1039/c8sc03751e.

23. Zhu, S., Herraiz, S., Yue, J., Zhang, M., Wan, H#. (co-first author), et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates. Advanced Materials, 2018, 30(13), e1705799. DOI: 10.1002/adma.201705799.

24. Zhang, M., Yue, J., Cui, R., Ma, Z., Wan, H# (co-first author), et al. Bright quantum dots emitting at 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proceedings of the National Academy of Sciences, 2018, 115(26), 6590-6595. DOI: 10.1073/pnas.1806153115.

25. Zhang, B., Zhao, S., Wan, H#., (co-first author, cover art), et al. High-resolution DNA size enrichment using a magnetic nano-platform and application in non-invasive prenatal testing. Analyst, 2020, 145, 5733-5739. DOI: 10.1039/d0an00813c.

26. Wang, W., Ma, Z., Zhu, S., Wan, H. et al. Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II fluorophore-peptide probe. Advanced Materials, 2018, 30(22), e1800106.  DOI: 10.1002/adma.201800106.

27. Zhong, Y., Ma, Z., Wang, F., Wang, X., Yang, Y., Liu, Y., Zhao, X., Li, J., Du, H., Zhang, M., Cui, Q., Zhu, S., Sun, Q., Wan, H. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nature Biotechnology, 2019, 37, 1322-1331. DOI: 10.1038/s41587-019-0262-4.

28. Yang, Q., Hu, Z., Zhu, S., Ma, R., Ma, H., Ma, Z., Wan, H. et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. Journal of the American Chemical Society2018, 140, 1715-1724. DOI: 10.1021/jacs.7b10334.

29. Zhang, B., Pinsky, P., Ananta, J., Zhao, S., Arulkumar, S., Wan, H. et al. Diagnosis of Zika virus infection on a nanotechnology platform. Nature Medicine, 2017, 23, 548-550. DOI: 10.1038/nm.4302.

30. Zhong, Y., Ma, Z., Zhu, S., Yue, J., Zhang, M., Antaris, A., Yuan, J., Wan, H. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nature Communications, 2017, 8, 737. DOI: 10.1038/s41467-017-00917-6.

31. Zhu, S., Yang, Q., Antaris, A., Yue, J., Ma, Z., Wang, H., Huang, W., Wan, H. et al. Molecular imaging of biological systems with a clickable dye in the broad 800- to 1700-nm near-infrared window. Proceedings of the National Academy of Sciences, 2017, 114(5), 962-967. DOI: 10.1073/pnas.1617990114.

32. Yang, Q., Ma, Z., Wang, H., Zhou, B., Zhu, S., Zhong, Y., Wang, J., Wan, H. et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window. Advanced Materials, 2017, 29, 1605497. DOI: 10.1002/adma.201605497.

33. Zhu, S., Song, Y., Wang, J., Wan, H. et al. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today, 2017, 13, 10-14. DOI: 10.1016/j.nantod.2016.12.006.

34. Liu, B., Li, Y., Wan, H. et al. High performance, multiplexed lung cancer biomarker detection on a plasmonic gold chip. Advanced Functional Materials, 2016, 26, 7994-8002. DOI: 10.1002/adfm.201603547.

35. Liu, F., Wan, H. et al. Preparation of polypropylene spin tips filled with immobilized titanium (IV) ion monolithic adsorbent for robust phosphoproteome analysis. Analytical Chemistry2016, 88, 10, 5058-5064. DOI: 10.1021/acs.analchem.6b00701.

36. Xiong, Z., Qin, H., Wan, H. et al. Layer-by-layer assembly of multilayer polysaccharide coated magnetic nanoparticles for the selective enrichment of glycopeptides. Chemical Communications, 2013, 49, 9284-9286. DOI: 10.1039/c3cc45008b.

37. Koh, B., Li, X., Antaris, A., Wan, H. et al. Visible to near-infrared fluorescence enhanced cellular imaging on plasmonic gold chips. Small, 2016, 12(4), 457-465. DOI: 10.1002/smll.201502182.

38. Huang, J., Qin, H., Sun, Z., Huang, G., Wan, H. et al. A peptide N-terminal protection strategy for comprehensive glycoproteome analysis using hydrazide chemistry based method. Scientific Reports, 2015, 5, 10164. DOI: 10.1038/srep10164.

39. Li, J., Wang, F., Liu, J., Xiong, Z., Huang, G., Wan, H. et al. Functionalizing with Glycopeptide Dendrimers Significantly Enhances the Hydrophilicity of the Magnetic Nanoparticles. Chemical Communications, 2015, 51, 4093-4096. DOI: 10.1039/c5cc00187k.

40. Zhang, Q., Zhang, Q., Xiong, Z., Wan, H. et al. Facile preparation of mesoporous carbon-silica-coated graphene for the selective enrichment of endogenous peptides. Talanta2016, 146, 272-278. DOI: 10.1016/j.talanta.2015.08.068.

41. Zhang, Q., Zhang, Q., Xiong, Z., Wan, H. et al. Facile preparation of carbon-functionalized ordered magnetic mesoporous silica composites for highly selective enrichment of N-glycans. RSC Advances, 2015, 5, 68972-68980. DOI: 10.1039/c5ra11998g.

42. Li, J., Wang, F., Wan, H. et al. Magnetic nanoparticles coated with maltose-functionalized polyethyleneimine for highly efficient enrichment of N-glycopeptides. Journal of Chromatography A, 2015, 1425, 213-220. DOI: 10.1016/j.chroma.2015.11.044.

43. Huang, G., Ou, J., Wang, H., Ji, Y. Wan, H. et al. Synthesis of a stationary phase based on silica modified with branched octadecyl groups by Michael addition and photoinduced thiol-yne click chemistry for the separation of basic compounds. Journal of Separation Science, 2016, 39, 1461-1470. DOI: 10.1002/jssc.201501403.

44. Zhang, Z., Yang, B.Y., Zhao, J.Y., Xie, A.Q., Feng, L.*, Wan, Y.Q. Purification, structure and conformation characterization of a novel glucogalactan from Anoectochilus roxburghiiInternational Journal of Biological Macromolecules, 2021, 178, 547-557. DOI: 10.1016/j.ijbiomac.2021.02.172.

45. Zhang, Z., Guo, L., Yan, A.P., Feng, L.*, Wan, Y.Q. Fractionation, structure and conformation characterization of polysaccharides from Anoectochilus roxburghiiCarbohydrate Polymers, 2020, 231, 115688. DOI: 10.1016/j.carbpol.2019.115688.

46. Feng, L., Yin, J.Y., Nie, S.P., Wan, Y.Q., Xie, M.Y. Structure and conformation characterization of galactomannan from seeds of Cassia obtusifoliaFood Hydrocolloids, 2018, 76: 67-77. DOI: 10.1016/j.foodhyd.2017.06.008.

47. Feng, L., Yin, J.Y., Nie, S.P., Wan, Y.Q., Xie, M.Y. Enzymatic purification and structure characterization of glucuronoxylan from water extract of Cassia obtusifolia seeds. International Journal of Biological Macromolecules, 2018, 107: 1438-1446. DOI: 10.1016/j.ijbiomac.2017.10.014.

48. Feng, L., Yin, J.Y., Nie, S.P., Wan, Y.Q., Xie, M.Y. Fractionation, physicochemical property and immunological activity of polysaccharides from Cassia obtusifoliaInternational Journal of Biological Macromolecules, 2016, 91: 946-953. DOI: 10.1016/j.ijbiomac.2016.05.030.

49. Wei, W., Feng, L.# (co-first author), Bao, W.R., Ma, D.L., Leung, C.H., Nie, S.P., Han, Q.B. Structure characterization and immunomodulating effects of polysaccharides isolated from Dendrobium officinale. Journal of Agricultural and Food Chemistry, 2016, 64(4): 881-889. DOI: 10.1021/acs.jafc.5b05180.