方向一 结构的智慧化设计与建造 (Data-driven structural design and manufacturing)
(44)Huang, Z., Chen, Z.,Xie, G.,Hua, Y., Zhu, L., & Hu, N.(2023).“Implementation of parametric modeling to design Miura origami-inspired canopy toward adaptive urban habitat”, Architecture, Structures, and Construction, https://doi.org/10.1007/s44150-023-00100-0
(43) Leong, Z.,Chen,R.,Xu, Z., Lin., Y., & Hu,N. (2023).“ Robotic arm three-dimensional printing and modular construction of a meter-scale lattice facade structure”, Engineering Structures, 290, 116368. https://doi.org/10.1016/j.engstruct.2023.116368
(39)Ye, X., Cao, Y., Liu, A., Wang, X., Zhao, Y., & Hu,N. (2023).“ Parallel convolutional neural network toward high efficiency and robust structural damage identification”, Structures Health Monitoring. https://doi.org/10.1177/14759217231158786
(37) Xie,B., Yao, X., Mao. W., Rafiei, M. & Hu, N. (2023). “ High-efficient low-cost characterization of composite material properties using domain-knowledge-guided self-supervised learning”,Computational Material Sciences, 216, 111834. https://doi.org/10.1016/j.commatsci.2022.111834
(27) Ma, C., Zhang, Z., Luce, B., Pusateri, S., Xie, B., Rafiei, M., & Hu, N. (2020). “Accelerated design and characterization of non-uniform cellular materials via a machine-learning based framework”, npj Computational Materials, 6(1), 40. https://doi.org/10.1038/s41524-020-0309-6
(24) Ma, C., Zhang, D., Zhang, Z., Zhang, H., Gul, D., Schellenberg, A, Feng, P., & Hu, N. (2019). “Exploiting spatial heterogeneity and response characterization in non-uniform architected materials inspired by slime mould growth”, Bioinspiration & Biomimetics, 14 (6), 064001. https://doi.org/10.1088/1748-3190/ab3b12
方向二 高性能结构的定制化设计 (High-performance structures with tailorable properties)
(42) Chen, M., Yao, X., Zhu, L., Xiong, Y., & Hu, N. (2023), “Geometric design and performance of single and dual-printed lattice-reinforced cementitious composite”, Cement and Concrete Composites, 143, 105266. https://doi.org/10.1016/j.cemconcomp.2023.105266
(40)Xie, B., Li, X., Zhao, X., & Hu, N. (2023). “Architected lattice-reinforced cementitious composite: from versatile local designs to tunable global behaviors”, Composite Structures, 312,116850. https://doi.org/10.1016/j.compstruct.2023.116850
(38)Li, Z., Xie, C., Li, F., Wu, D., & Hu, N. (2023). “Heterogeneous geometric designs in auxetic composites toward enhanced mechanical properties under various loading scenarios”, Composites Communications, 38, 101499. https://doi.org/10.1016/j.coco.2023.101499
(36)Yao, X., Chen, M., Zhao, J., Zhang. Y. & Hu, N. (2022), “Tailoring plastic deformation of metallic architected materials toward multi-stage energy dissipations”, Materials & Design, 223, 111262. https://doi.org/10.1016/j.matdes.2022.111262
(28) Zhang, Z., Pusateri, S., Xie, B., Hu, N. (2020). “Tunable Energy Trapping through Contact-induced Snap-through Buckling in Strips with Programmable Imperfections”, Extreme Mechanics Letters, 37, 100732. https://doi.org/10.1016/j.eml.2020.100732
(26)Zhao, Y., Zhang. Z., Maria Joseph. M., Ma, C., Gul, D., Schellenberg, A., Hu, N. (2020). “Deterministic snap-through buckling and energy trapping in axially-loaded notched strips for compliant building blocks”, Smart Materials and Structures, 29(2), 02LT03. https://doi.org/10.1088/1361-665X/ab6486
(21)Wang, D., Hu, N., Huang, S., Nasab, A., Yang, K., Abate, M., Yu, X., Tan, L., Shan, W. and Chen, Z. (2018) “Buckling and post-buckling of an elastic rod embedded in a bilayer matrix”, Extreme Mechanics Letter, 5, 1-6. https://doi.org/10.1016/j.eml.2018.10.004
方向三 应对复杂环境的适应结构 (Adaptive structures toward complex environments)
(41)Liu, T., Gan, Z., Yin, Y., Zhao, D. & Hu, N. (2023), “Modular shape-switching architected materials toward programmable acoustic properties”, Extreme Mechanics Letters, 61, 102029. https://doi.org/10.1016/j.eml.2023.102029
(35)Liu, P., Mao, W., Yin, Y., Gan, Z., Zhao, D. & Hu, N. (2022),“ Jigsaw-inspired modular architected materials with tailorable stiffness and programmable reconfiguration for adaptive flow regulations”, Advanced Engineering Materials, 2200148. https://doi.org/10.1002/adem.202200148
(30) Zhang, Z., Luce, B., Ma, C., Xie, B., & Hu, N. (2020). “Programmable Origami-inspired Cellular Architected Building Blocks for Flow-regulating Adaptive Weir”, Extreme Mechanics Letters, 40,100974. https://doi.org/10.1016/j.eml.2020.100974
(25) Wu, S., Ze, Q., Zhang, R., Hu, N., Cheng, Y., Feng, F.W., Zhao, R. (2019). “Symmetry-breaking Actuation Mechanism for Soft Robotics and Active Metamaterials”, ACS Applied Materials & Interfaces, 11 (44), 41649-41658. https://doi.org/10.1021/acsami.9b13840
(23)Miao, W., Yao, Y., Zhang, Z., Ma, C., Li, S., Tang, J., Liu, H., Liu, Z., Wang, D., Zheng, S., Hu, N., & Wang, X. (2019). “Micro-/Nano-Voids Guided Two-Stage Film Cracking on Bioinspired Assemblies for High-Performance Electronics”. Nature Communications, 10 (1), 1-8. https://doi.org/10.1038/s41467-019-11803-8
(22)Yan, B., Ma, C., Zhao, Y., Hu, N., & Guo, L. (2019). “Geometrically Enabled Soft Electroactuators via Laser Cutting”, Advanced Engineering Material, 21: 1900664. https://doi.org/10.1002/adem.201900664
(20)Hu, N., Chen, D.J., Wang, D., Huang, S.C., Trase, I., Grover, H.M., Yu. X, Zhang, X.J. & Chen, Z. (2018). “Stretchable Kirigami polyvinylidene difluoride Thin Films for Energy Harvesting: Design, Analysis, and Performance”, Physical Review Applied, 9, 021002. https://doi.org/10.1103/PhysRevApplied.9.021002
多学科合作成果
(46)Yu, C., Xie, B., Yao, X., Hu, N., Guo, J., Jiang X., Smith, A., & Sun, L. (2023). “Cabbage-like flexible fluororubber/carbon aerogel hybrids with negative Poisson’s ratios, outstanding thermal insulation, and superior microwave absorption”, Matter.
(45)Peng, S., Xie, B., Wang, Y. L., Wang, M., Chen, X., Hu, N., He, H., & Zheng, S. (2023), “Low-grade wind driven directional flow in anchored droplets”. The Proceedings of the National Academy of Sciences (PNAS),120(38),https://doi.org/10.1073/pnas.2303466120
(29) Wang, H., Zhang, Z., Qian, H., Liu, Y., Hu, N., & Fan, F. (2020). “Galvanic Corrosion induced Localized Defects and Resulting Strength Reduction of Circular Steel Tubes: An Experimental Study”, Thin-walled Structures, 154,106881. https://doi.org/10.1016/j.tws.2020.106881
(34) Zhang, D., Meng, X., Hu, N. & Feng, P. (2022).“ Experimental study on loading-induced power generation decline of component-level flexible solar cells”, Thin-walled Structures, 175, 109231. https://doi.org/10.1016/j.tws.2022.109231
(33) Meng, X., Zhang, D., Feng, P., & Hu, N. (2021). “Review on Mechanical Behavior of Solar Cells for Building Integrated Photovoltaics”,Sustainable Structures, 1(2), 00009. https://doi.org/10.54113/j.sust.2021.000009
(32)Jian, S., Wu, B., & Hu, N. (2021). “Environmental impacts of three waste concrete recycling strategies for prefabricated components through comparative life cycle assessment”. Journal of Cleaner Production, 328, 129463. https://doi.org/10.1016/j.jclepro.2021.129463
独立PI前
(31)Wan, G., Cai, Y., Liu, Y., Jin, C., Wang, D., Huang, S., Hu, N, Zhang, X.J. & Chen, Z. (2020). “Bistability in popper-like shells programmed by geometric defects”, Extreme Mechanics Letters, 42, 101065. https://doi.org/10.1016/j.eml.2020.101065
(19) Hu, N., & Burgueño, R. (2018) “Cylindrical Shells with Tunable Postbuckling Features through Non-Uniform Patterned Thickening Patches”. International Journal of Structural Stability and Dynamics, 18, 1850026. https://doi.org/10.1142/S0219455418500268
(18) Yu, X.J., Zhang, L.N., Hu, N., Huang, S.C., Wang, D. & Chen, Z. (2017). “Shape Transition in Helical Ribbons Induced by Material Anisotropy”, Applied Physics Letters. 110, 091901. https://doi.org/10.1063/1.4977090
(17) Hu, N., Han, X., Huang, S, Grover, H.M., Yu, X., Zhang. L., Trase, I., Zhang, X.J., Zhang. L., Dong, L.X. & Chen, Z. (2017). “Edge Effect of Strained Bilayer Nanofilms for Tunable Multistability and Actuation”. Nanoscale, 9, 2958-2962. https://doi.org/10.1039/c6nr08770a
(16)Tian, Z, Zhang, L., Fang, Y, Xu, B, Tang, S., Hu, N., An, Z, Chen, Z., & Mei, Y.F. (2017) “Deterministic self-rolling of ultra-thin nanocrystalline diamond nanomembranes for three-dimensional tubular/helical architecture”, Advanced Materials, 29(13), 1604572. https://doi.org/10.1002/adma.201604572
(15) Hu, N, Burgueño, R. (2016). “Harnessing seeded geometric imperfection to design cylindrical shells with tunable elastic postbuckling behavior”, Journal of Applied Mechanics, 84(1), 011003. https://doi.org/10.1115/1.4034827
(14) Hu, N, Burgueño, R., Haider, S.W., Sun, Y. (2016). “Framework for Estimating Bridge-Deck Chloride-Induced Degradation from Local Modeling to Global Asset Assessment.” Journal of Bridge Engineering, 21(9), 06016005. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000924
(13) Hu, N, Burgueño, R. (2015). “Elastic Postbuckling Behavior of Cylindrical Shells with Seeded Geometric Imperfection Design.” Thin-walled Structures, 96, 256-268; https://doi.org/10.1016/j.tws.2015.08.014
(12) Hu, N, Burgueño, R. (2015). “Tailoring of The Elastic Postbuckling Response of Cylindrical Shells: A Route for Exploiting Instabilities in Materials And Mechanical Systems.” Extreme Mechanics Letters, 4, 103-110; https://doi.org/10.1016/j.eml.2015.05.003
(11) Hu, N, Burgueño, R. (2015). “Buckling-induced Smart Applications: Recent Advances and Trends.” Smart Materials and Structures, 24(6), 063001. https://doi.org/10.1088/0964-1726/24/6/063001; Selected as a Top 10 Review
(10) Yan, B, Dai, G. L. and Hu, N. (2015). “Recent development of design and construction of short span high-speed railway bridges in China.” Engineering Structures, 100, 707-717; https://doi.org/10.1016/j.engstruct.2015.06.050
(9) Burgueño, R., Hu, N, Heeringa, A, and Lajnef, N. (2014).“Tailoring the Elastic Postbuckling Response of Thin-walled Cylindrical Shell under Axial Compression.” Thin-Walled Structures, 84, 14-25; https://doi.org/10.1016/j.tws.2014.05.009
(8) Hu, N, Feng, P., Dai, G. L. (2014). “Structural Art: Past, Present, and Future.”, Engineering Structures, 79, 407- 416;
https://doi.org/10.1016/j.engstruct.2014.08.040
(7)Hu, N, Dai, G. L., Yan, B. and Liu, K. (2014). “Recent development of design and construction of medium and long span high-speed railway bridges in China.” Engineering Structures, 74, 233-241; https://doi.org/10.1016/j.engstruct.2014.05.052
(6) Hu, N, Feng, P., and Dai, G. L.(2013). “The Gift from Nature: Bio-Inspired Strategy for Developing Innovative Bridges.” Journal of Bionic Engineering, 10(4): 405-414.; https://doi.org/10.1016/S1672-6529(13)60246-2
(5) Feng, P., Hu, N., He, S. T., Lu, X. Z. (2011). “Collision test of a FRP bridge beam,” Fiber Reinforced Plastics/Composites, 5: 24-28. (in Chinese); https://kns.cnki.net/kcms/detail/detail.aspx?FileName=BLGF201105006&DbName=CJFQ2011
(4) Dai, G. L., Song, X. M., Hu, N. (2010). “Sanchaji Bridge: Three-Span Self-Anchored Suspension Bridge, China” Structural Engineering International, 20(4), 458-461; https://doi.org/10.2749/101686610793557735
(3) Liu, W. S., Dai, G. L., Hu, N. (2010). “Design of Medium-Small Span Continuous Beam Bridge in High-Speed Railway of China.” Journal of railway science and engineering, 7(4), 45-51; (in Chinese) https://doi.org/10.19713/j.cnki.43-1423/u.2010.02.010
(2)Hu, N, and Dai, G.L. (2009). “Bio-based Method in Bridge Design.” World Bridge, 37(3), 60-65; (in Chinese) https://kns.cnki.net/kcms/detail/detail.aspx?FileName=GWQL200903019&DbName=CJFQ2009
(1)Hu, N, and Dai, G.L. (2009). “Landscape Design of Urban Large Bridges–Case Study of Sanchaji Xiangjiang River Bridge,” Bridge Magazine, 5(2): 90-93. (in Chinese)