53. M. Li, X. Meng, Z. Tong,* Significantly enhanced crystallization of poly(L-lactide) by incorporation of poly(D-lactide) grafted cellulose nanocrystals. J. Appl. Polym. Sci. 2024, 141, e55967. https://doi.org/10.1002/app.55968
52. L. Liu, Calum T. J. Ferguson, L. Zhu, S. Chen, R. -Y. Wang, S. Wang, A. P. Dove, R. K. O’Reilly, Z. Tong,* Synthesis of hollow platelet polymer particles by spontaneous precision fragmentation. Nat. Synth. 2024, 3, 903-912. https://doi.org/10.1038/s44160-024-00554-0
51. K. Yang, B. Bai, J. Lei, X. Yu, S. Qi, Y. Wang, F. Huang, Z. Tong, and G. Yu,* Biodegradable Lipid-Modified Poly(Guanidine Thioctic Acid)s: A Fortifier of Lipid Nanoparticles to Promote the Efficacy and Safety of mRNA Cancer Vaccines. J. Am. Chem. Soc. 2024, 146, 17, 11679–11693. https://doi.org/10.1021/jacs.3c14010
50. Z. Chu, X. Meng, Z. Tong,* Precision control of one-/two-dimensional assemblies for Poly(hexamethylene carbonate) block copolymers. Polymer 2024, 298, 126897. https://doi.org/10.1016/j.polymer.2024.126897
49. L. Liu, X. Meng, M. Li, Z. Chu, Z. Tong,* Regulation of Two-Dimensional Platelet Micelles with Tunable Core Composition Distribution via Coassembly Seeded Growth Approach. ACS Macro Lett. 2024, 13, 542−549. https://doi.org/10.1021/acsmacrolett.4c00124
48. F. Teng, B. Xiang, L. Liu, S. Varlas, Z. Tong,* Precise Control of Two-Dimensional Hexagonal Platelets via Scalable,One-Pot Assembly Pathways using Block Copolymers with Crystalline Side Chains. J. Am. Chem. Soc. 2023, 145, 51, 28049–28060. https://doi.org/10.1021/jacs.3c09370
47. Y. Xie, Z. Tong, T. Xia, J. C. Worch, J. Y. Rho, A. P. Dove*, R. K. O’Reilly*. 2D Hierarchical Micro-barcodes with Expanded Storage Capacity for Optical Multiplex and Information Encryption. Adv. Mat. 2023, 36, 2308154. https://doi.org/10.1002/adma.202308154
46. B. Xiang, X. Wang, F. Teng, L. Liu, M. Li, X. Meng. Z. Chu, X. Zhou,* Y. Xie,* Z. Tong,* Regulation of Two-Dimensional Platelet Micelle by Dynamic Changing of Polymer Topological Architectures upon Light Irradiation. Macromolecules 2023, 56, 23, 9685–9696. https://doi.org/10.1021/acs.macromol.3c01720
45. L. Zhu, L. Liu, S. Varlas, R. -Y. Wang, R. K. O’Reilly, Z. Tong,* Understanding the Seeded Heteroepitaxial Growth of Crystallizable Polymers: the Role of Crystallization Thermodynamics. ACS Nano 2023, 17, 23, 24141–24153. https://doi.org/10.1021/acsnano.3c09130
44. T. Xia, Z. Tong, Y. Xie, M. C. Arno, S. Lei, L. Xiao, J. Y. Rho, C. T. J. Ferguson, I. Manners, A. P. Dove,* R. K. O’Reilly,* Tuning the Functionality of Self-Assembled 2D Platelets in the Third Dimension. J. Am. Chem. Soc. 2023, 145, 25274−25282. https://doi.org/10.1021/jacs.3c08770
43. L. Liu, L. Zhu, Z. Chu, Z. Tong*, Seeded Epitaxial Growth of Crystallizable Polymers Governed by Crystallization Temperatures. Macromolecules 2023, 56, 5984-5992.
https://doi.org/10.1021/acs.macromol.3c00973
42. Z. Tong, Y. Xie, M. C. Arno, Y. Zhang, I. Manners,* R. K. O’Reilly,* A. P. Dove,* Uniform Segmented Platelet Micelles with Compositionally Distinct and Selectively Degradable Cores. Nat. Chem. 2023, 15, 824-831. https://doi.org/10.1038/s41557-023-01177-2
41. Z. Wan, M. Li, Y. Zhuang, Z. Tong*, Effect of electrospun stereocomplex PLA fibers and modified cellulose nanocrystals on crystallization of poly(L-lactic acid). J. Appl. Polym. Sci. 2023, 140, e53839. https://doi.org/10.1002/app.53839
40. L. Zhu, B. Xiang, Z. Tong*. Chemical shield effect of metal complexation on seeded growth of poly(ε-caprolactone) core-forming blends. Polymer. 2023, 272, 125831.
https://doi.org/10.1016/j.polymer.2023.125831
39. X. Zhang, G. Chen, B. Zheng, Z. Wan, L. Liu, L. Zhu, Y. Xie, Z. Tong*, Uniform Two-Dimensional Crystalline Platelets with Tailored Compositions for pH Stimulus-Responsive Drug Release. Biomacromolecules, 2023, 24, 1032–1041. https://doi.org/10.1021/acs.biomac.2c01481
38. 朱雪松,童再再. UCNP@mSiO2 纳米载体及其近红外光触发的药物可控释放研究. 浙江理工大学学报, 2022, 47(6): 900-907
37. Y. Wang, S. Cheng, W. Fan, Y. Jiang, J. Yang, Z. Tong*, G. Jiang. Dual responsive block copolymer coated hollow mesoporous silica nanoparticles for glucose-mediated transcutaneous drug delivery. Chin. J. Chem. Eng., 2022, 51, 35 -42. https://doi.org/10.1016/j.cjche.2021.07.019
36. Y. Jiang, Z. Lei, Z. Tong*. High drug loading polymer micelle@ZIF-8 hybrid core–shell nanoparticles through donor–receptor coordination interaction for pH/H2O2-responsive drug release. Front. Mater. Sci. 2022, 16(2): 220600. https://doi.org/10.1007/s11706-022-0600-1
35. W. Hui, Y. Su, Y. Jiang, W. Fan, S. Cheng, Z. Tong*, C. Cen, G. Jiang. Polymer Vesicles with Upper Critical Solution Temperature for Near-infrared Light-triggered Transdermal Delivery of Metformin in Diabetic Rats. Chin. J. Polym. Sci, 2022, 40(2): 157-165. https://doi.org/10.1007/s10118-021-2640-x
34. X. Zhang, G. Chen, L. Liu, L. Zhu, and Z. Tong*. Precise Control of Two-Dimensional Platelet Micelles from Biodegradable Poly(p-dioxanone) Block Copolymers by Crystallization-Driven Self-Assembly. Macromolecules 2022, 55, 8250−8261. https://doi.org/10.1021/acs.macromol.2c01158
33. Y. Su, Y. Jiang, L. Liu, Y. Xie, S. Chen, Y. Wang, R. K. O’Reilly, Z. Tong*. Hydrogen-Bond-Regulated Platelet Micelles by Crystallization Driven Self-Assembly and Templated Growth for Poly(ε-Caprolactone) Block Copolymers. Macromolecules 2022, 55, 1067−1076. https://doi.org/10.1021/acs.macromol.1c02402
32. Z. Tong*, Y. Su, Y. Xie, S. Chen, R. K. O’Reilly*. Spatially Restricted Templated Growth of Poly(ε-Caprolactone) From Carbon Nanotubes by Crystallization-Driven Self-Assembly.Macromolecules, 2021, 54, 2844-2851. https://doi.org/10.1021/acs.macromol.0c02739
31. Y. Wang, S. Cheng, Wei Hu, X. Lin, C. Cao, S. Zou, Z. Tong*, G. Jiang, X. Kong, Polymer-grafted hollow mesoporous silica nanoparticles integrated with microneedle patches for glucose-responsive drug delivery. Front. Mater. Sci., 2021, 15, 98-112. https://doi.org/10.1007/s11706-021-0532-1
30. Y. Lin, W. Hu, X. Bai, Y. Ju, C. Cao, S. Zou, Z. Tong*, C. Cen, G. Jiang, X. Kong, Glucose- and pH-Responsive Supramolecular Polymer Vesicles Based on Host−Guest Interaction for Transcutaneous Delivery of Insulin. ACS Appl. Bio Mater. 2020, 3, 6376−6383. https://doi.org/10.1021/acsabm.0c00813
29. Y. Su, H. Luo, Z. Tong*, Poly(ε-caprolactone) Single Crystals with Different Aspect Ratios Mediated by Counterion Exchange on the Basis of Hofmeister Series. Macromol. Chem. Phys. 2020, 221, 2000089. https://doi.org/10.1002/macp.202000089
28. Z. Lei, Q.Tang, Y. Ju, Y. Lin, X. Bai, H. Luo, Z. Tong*, Block copolymer@ZIF-8 nanocomposites as a pH-responsive multi-steps release system for controlled drug delivery. J. Biomater. Sci. Polym. Ed. 2020, 31, 695-711. https://doi.org/10.1080/09205063.2020.1713451
27. Z. Tong;* Y. Su; R.-Y.Wang; J.-T. Xu, Unexpected crystalline memory effect in poly(L-lactide) based block copolymers. CrystEngComm 2020, 22, 979-985. https://doi.org/10.1039/C9CE01853K
26. Z. Lei; Y. Ju; Y. Lin; X. Bai; W. Hu; Y. Wang; H. Luo; Z. Tong*, Reactive Oxygen Species Synergistic pH/H2O2-Responsive Poly(l-lactic acid)-block-poly(sodium 4-styrenesulfonate)/Citrate-Fe(III) @ ZIF-8 Hybrid Nanocomposites for Controlled Drug Release. ACS Applied Bio Materials 2019, 2 (8), 3648-3658. https://doi.org/10.1021/acsabm.9b00497
25. W. Hu; X. W. Bai; Y. P. Wang; Z. T. Lei; H. P. Luo; Z. Z. Tong*, Upper Critical Solution Temperature Polymer-Grafted Hollow Mesoporous Silica Nanoparticles for near-Infrared-Irradiated Drug Release. J. Mater. Chem. B 2019, 7 (38), 5789-5796. https://doi.org/10.1039/C9TB01071H
24. H. P. Luo; Y. H. Lin; Q. J. Tang; W. Hu; Y. P. Wang; Z. T. Lei; Z. Z. Tong*, Disassembly of Crystalline Platelets of an Amphiphilic Triblock Copolymer Mediated by Varying pH and Organic Diacids. Macromol. Chem. Phys. 2019, 220 (15), 1900187. https://doi.org/10.1002/macp.201900187
23. J. X. Zhong; Q. J. Tang; Y. S. Ju; Y. H. Lin; X. W. Bai; J. Y. Zhou; H. P. Luo; Z. T. Lei; Z. Z. Tong*, Redox and pH Responsive Polymeric Vesicles Constructed from a Water-Soluble Pillar 5 Arene and a Paraquat-Containing Block Copolymer for Rate-Tunable Controlled Release. J. Biomater. Sci. Polym. Ed. 2019, 30 (3), 202-214. https://doi.org/10.1080/09205063.2018.1561814
22. J. X. Zhong; H. P. Luo; Q. J. Tang; Z. T. Lei; Z. Z. Tong*, Counterion-Mediated Self-Assembly of Ion-Containing Block Copolymers on the Basis of the Hofmeister Series. Macromol. Chem. Phys. 2019, 220 (5), 1800554. https://doi.org/10.1002/macp.201800554
21. H. P. Luo; Q. J. Tang; J. X. Zhong; Z. T. Lei; J. Y. Zhou; Z. Z. Tong*, Interplay of Solvation and Size Effects Induced by the Counterions in Ionic Block Copolymers on the Basis of Hofmeister Series. Macromol. Chem. Phys. 2019, 220 (4), 1800508. https://doi.org/10.1002/macp.201800508
20. J. Y. Zhou; H. A. Xu; Z. Z. Tong*; Y. H. Yang; G. H. Jiang, Photo/pH-Controlled Host Guest Interaction between an Azobenzene-Containing Block Copolymer and Water-Soluble Pillar[6]arene as a Strategy to Construct the "Compound Vesicles" for Controlled Drug Delivery. Mater. Sci. Eng. C 2018, 89, 237-244. https://doi.org/10.1016/j.msec.2018.04.010
19. J. Y. Zhou; Q. J. Tang; J. X. Zhong; Z. T. Lei; H. P. Luo; Z. Z. Tong*; G. H. Jiang; X. D. Liu, Construction of Glucose and H2O2 Dual Stimuli-Responsive Polymeric Vesicles and Their Application in Controlled Drug Delivery. J. Mater. Sci. 2018, 53 (20), 14063-14074. https://doi.org/10.1007/s10853-018-2622-8
18. Z. Z. Tong*; J. Y. Zhou; J. X. Zhong; Q. J. Tang; Z. T. Lei; H. P. Luo; P. P. Ma; X. D. Liu, Glucose- and H2O2-Responsive Polymeric Vesicles Integrated with Microneedle Patches for Glucose-Sensitive Transcutaneous Delivery of Insulin in Diabetic Rats. ACS Appl. Mater. Interfaces 2018, 10 (23), 20014-20024. https://doi.org/10.1021/acsami.8b04484
17. W. Q. Zhuo; H. A. Xu; R. S. Huang; J. Zhou; Z. Z. Tong*; H. J. Xie; X. Zhang, A Chelating Polymer Resin: Synthesis, Characterization, Adsorption and Desorption Performance for Removal of Hg(II) from Aqueous Solution. J. Iran. Chem. Soc. 2017, 14 (12), 2557-2566. https://doi.org/10.1007/s13738-017-1190-1
16. W. Q. Zhuo; Y. M. Li; R. K. Zhang; R. S. Huang; J. Zhou; Z. Z. Tong*; G. H. Jiang*, Single Crystals of Crystalline Block Copolymers Formed in N-Hexanol and Methanol/Dmf Solutions: A Comparative Study. J. Appl. Polym. Sci. 2017, 134 (29), 45089. https://doi.org/10.1002/app.45089
15. Z. Z. Tong*; W. Q. Zhuo; J. Zhou; R. S. Huang; G. H. Jiang, Crystallization Behavior and Enhanced Toughness of Poly(Ethylene Terephthalate) Composite with Noncovalent Modified Graphene Functionalized by Pyrene-Terminated Molecules: A Comparative Study. J. Mater. Sci. 2017, 52 (17), 10567-10580. https://doi.org/10.1007/s10853-017-1173-8
14. Z. Z. Tong*; J. Y. Zhou; R. Y. Wang; J. T. Xu, Interplay of Microphase Separation, Crystallization and Liquid Crystalline Ordering in Crystalline/Liquid Crystalline Block Copolymers. Polymer 2017, 130, 1-9. https://doi.org/10.1016/j.polymer.2017.09.071
13. Z. Z. Tong*; J. Y. Zhou; R. S. Huang; J. Zhou; R. K. Zhang; W. Q. Zhuo; G. H. Jiang, Dual-Responsive Supramolecular Self-Assembly of Inclusion Complex of an Azobenzene-Ended Poly(Epsilon-Caprolactone) with a Water-Soluble Pillar 6 Arene and Its Application in Controlled Drug Release. J. Polym. Sci., Part A: Polym. Chem. 2017, 55 (15), 2477-2482. https://doi.org/10.1002/pola.28639
12. Z. Z. Tong; R. K. Zhang; P. P. Ma; H. A. Xu; H. Chen; Y. M. Li; W. J. Yu; W. Q. Zhuo; G. H. Jiang*, Surfactant-Mediated Crystallization-Driven Self-Assembly of Crystalline/Ionic Complexed Block Copolymers in Aqueous Solution. Langmuir 2017, 33 (1), 176-183. https://doi.org/10.1021/acs.langmuir.6b02905
11. G. C. Yu; Y. Ye; Z. Z. Tong*; J. Yang; Z. T. Li; B. Hua; L. Shao; S. J. Li, A Porphyrin-Based Discrete Tetragonal Prismatic Cage: Host-Guest Complexation and Its Application in Tuning Liquid-Crystalline Behavior. Macromol. Rapid Commun. 2016, 37 (18), 1540-1547. https://doi.org/10.1002/marc.201600280
10. Z. Z. Tong; Y. M. Li; H. A. Xu; H. Chen; W. J. Yu; W. Q. Zhuo; R. K. Zhang; G. H. Jiang*, Corona Liquid Crystalline Order Helps to Form Single Crystals When Self-Assembly Takes Place in the Crystalline/Liquid Crystalline Block Copolymers. ACS Macro Lett. 2016, 5 (7), 867-872. https://doi.org/10.1021/acsmacrolett.6b00428
独立工作之前
9. Zai-Zai Tong, Yao Huang, Jun-Ting Xu, Zhi-Sheng Fu, Zhi-Qiang Fan. Chain Structure, aggregation state structure and tensile behavior of segmented ethylene-propylene copolymers produced by an oscillating unbridged metallocene catalyst. J. Phys. Chem. B., 2015, 119, 6050.
https://doi.org/10.1021/acs.jpcb.5b01845
8. Zai-Zai Tong, Rui-Yang Wang, Jie Huang, Jun-Ting Xu, ZhiQiang Fan. Regulation of the self-assembly morphology of azobenzene-bearing double hydrophobic block copolymers in aqueous solution by shifting the dynamic host-guest complexation. Polym. Chem., 2015, 6, 2214. https://doi.org/10.1039/C5PY00004A
7. Zai-Zai Tong, Jin-Qiao Xue, Rui-Yang Wang, Jie Huang, Jun-Ting Xu, Zhi-Qiang Fan. Hierarchical self-assembly, photo-responsive phase behavior and variable tensile property of azobenzene-containing ABA triblock copolymers. RSC Adv., 2015, 5, 4030.
https://doi.org/10.1039/C4RA12844C
6. Zai-Zai Tong, Jie Huang, Bing Zhou, Jun-Ting Xu, Zhi-Qiang Fan. Self-nucleation behaviors of olefinic blocky copolymer/montmorillonite nanocomposites with collapsed and intercalated clay layers. J. Appl. Polym. Sci., 2015, 132, 41771.
https://doi.org/10.1016/j.compscitech.2013.06.003
5. Zai-Zai Tong, Bing Zhou, Jie Huang, Jun-Ting Xu, Zhi-Qiang Fan. Regulation of crystallization kinetics morphology and mechanical properties of olefinic blocky copolymers. Macromolecules, 2014, 47, 333. https://doi.org/10.1021/ma4023263
4. Zai-Zai Tong, Bing Zhou, Jie Huang, Jun-Ting Xu, Zhi-Qiang Fan. Hierarchical structures of olefinic blocky copolymer/montmorillonite nanocomposites with collapsed and intercalated clay layers. RSC Adv., 2014, 4, 15678. https://doi.org/10.1039/C4RA00628C
3. Zai-Zai Tong, Bing Zhou, Jie Huang, Jun-Ting Xu, Zhi-Qiang Fan. Olefinic blocky copolymer/montmorillonite nanocomposites with collapsed clay layers. Compos. Sci. Technol., 2013, 85, 111. https://doi.org/10.1016/j.compscitech.2013.06.003
2. Zai-Zai Tong, Jie Huang, Bing Zhou, Jun-Ting Xu, Zhi-Qiang Fan. Chain Microstructure, crystallization, and morphology of olefinic blocky copolymers. Macromol. Chem. Phys., 2013, 214, 605. https://doi.org/10.1002/macp.201200615
1. Zai-Zai Tong, Jun-Ting Xu, Sheng-Jie Xia, Zhi-Qiang Fan. Comparison of chain structure and morphology of an olefinic blocky copolymer and a Ziegler-Natta-based ethylene random copolymer. Polym. Int. 2013, 62, 228. https://doi.org/10.1002/pi.4288