21646
当前位置: 首页   >  课题组新闻   >  JBJS盘点年度九大进展,南京大学孙洋/徐强团队病理性骨形成研究入选
JBJS盘点年度九大进展,南京大学孙洋/徐强团队病理性骨形成研究入选
发布时间:2023-02-22

Journal of Bone & Joint Surgery(JBJS)创刊于1903年,是美国骨科协会的官方杂志,亦是骨科领域的顶尖杂志。2022年12月,JBJS杂志发表社论,盘点了2022年20项开创性研究(Groundbreaking studies),总结了骨科基础研究领域的九项重大研究进展。其中,南京大学生命科学学院孙洋/徐强团队在Nature Communications 上发表题为Targeting chondrocytes for arresting bony fusion in ankylosing spondylitis的研究论文入选为“病理性骨形成”板块的重要成果。


2022年度骨科基础研究领域的九项重大进展




// 2022 JBJS 

一、Pain Resolution Compared with Pain Chronification (疼痛缓解VS慢性疼痛)


参考文献:

1. van der Vlist M, Raoof R, Willemen HLDM, Prado J, Versteeg S, Martin Gil C, Vos M, Lokhorst RE, Pasterkamp RJ, Kojima T, Karasuyama H, Khoury-Hanold W, Meyaard L, Eijkelkamp N. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron. 2022 Feb 16;110(4):613-626.e9.(乌得勒支大学医学中心转化免疫学中心Niels Eijkelkamp团队)


二、Autonomic Innervation of Bone (骨的自主神经支配)


参考文献:

2. Gadomski S, Fielding C, García-García A, Korn C, Kapeni C, Ashraf S, Villadiego J, Toro RD, Domingues O, Skepper JN, Michel T, Zimmer J, Sendtner R, Dillon S, Poole KES, Holdsworth G, Sendtner M, Toledo-Aral JJ, De Bari C, McCaskie AW, Robey PG, Méndez-Ferrer S. A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise. Cell Stem Cell. 2022 Apr 7;29(4):528-544.e9.(剑桥大学惠康-MRC干细胞研究所Simón Méndez-Ferrer团队)


三、Traumatic Brain Injury and Bone Healing (颅脑损伤与骨愈合)


参考文献:

3. Xia W, Xie J, Cai Z, Liu X, Wen J, Cui ZK, Zhao R, Zhou X, Chen J, Mao X, Gu Z, Zou Z, Zou Z, Zhang Y, Zhao M, Mac M, Song Q, Bai X. Damaged brain accelerates bone healing by releasing small extracellular vesicles that target osteoprogenitors. Nat Commun. 2021 Oct 15;12(1):6043.(南方医科大学白晓春团队)




// 2022 JBJS



四、Skeletal Stem Cell Biology and Mechanosensing (骨骼干细胞生物学与机械感应)


参考文献:

4. Kim P, Park J, Lee DJ, Mizuno S, Shinohara M, Hong CP, Jeong Y, Yun R, Park H, Park S, Yang KM, Lee MJ, Jang SP, Kim HY, Lee SJ, Song SU, Park KS, Tanaka M, Ohshima H, Cho JW, Sugiyama F, Takahashi S, Jung HS, Kim SJ. Mast4 determines the cell fate of MSCs for bone and cartilage development. Nat Commun. 2022 Jul 8;13(1):3960.(韩国GILO基金会Seong-Jin Kim团队)

5. Shen B, Tasdogan A, Ubellacker JM, Zhang J, Nosyreva ED, Du L, Murphy MM, Hu S, Yi Y, Kara N, Liu X, Guela S, Jia Y, Ramesh V, Embree C, Mitchell EC, Zhao YC, Ju LA, Hu Z, Crane GM, Zhao Z, Syeda R, Morrison SJ. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature. 2021 Mar;591(7850):438-44.(德克萨斯大学西南医学中心儿童研究所Sean J. Morrison团队)

6. Peng H, Hu B, Xie LQ, Su T, Li CJ, Liu Y, Yang M, Xiao Y, Feng X, Zhou R, Guo Q, Zhou HY, Huang Y, Jiang TJ, Luo XH. A mechanosensitive lipolytic factor in the bone marrow promotes osteogenesis and lymphopoiesis. Cell Metab. 2022 Aug 2;34(8):1168-1182.e6.(中南大学湘雅医院内分泌研究中心罗湘杭团队)

7. Dzamukova M, Brunner TM, Miotla-Zarebska J, Heinrich F, Brylka L, Mashreghi MF, Kusumbe A, Kühn R, Schinke T, Vincent TL, Löhning M. Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth.Nat Commun. 2022 Jun 1;13(1):3059.(德国风湿病研究中心柏林莱布尼茨研究所Max Löhning团队)


五、Skeletal Aging, Senescence, and Senolytics (骨骼老化、衰老和清除衰老细胞)


参考文献:

8. Ambrosi TH, Marecic O, McArdle A, Sinha R, Gulati GS, Tong X, Wang Y, Steininger HM, Hoover MY, Koepke LS, Murphy MP, Sokol J, Seo EY, Tevlin R, Lopez M, Brewer RE, Mascharak S, Lu L, Ajanaku O, Conley SD, Seita J, Morri M, Neff NF, Sahoo D, Yang F, Weissman IL, Longaker MT, Chan CKF. Aged skeletal stem cells generate an inflammatory degenerative niche.Nature. 2021 Sep;597(7875):256-62.(斯坦福大学医学院干细胞生物学和再生医学研究所Michael T. Longaker/Charles K. F. Chan团队)

9. Li CJ, Xiao Y, Sun YC, He WZ, Liu L, Huang M, He C, Huang M, Chen KX, Hou J, Feng X, Su T, Guo Q, Huang Y, Peng H, Yang M, Liu GH, Luo XH. Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab. 2021 Oct 5;33(10):1957-1973.e6.(中南大学湘雅医院内分泌研究中心罗湘杭团队)

10. Saul D, Monroe DG, Rowsey JL, Kosinsky RL, Vos SJ, Doolittle ML, Farr JN, Khosla S. Modulation of fracture healing by the transient accumulation of senescent cells. Elife. 2021 Oct 7;10:e69958.(罗彻斯特梅奥诊所内分泌科Joshua N Farr/ Sundeep Khosla团队)

11. Novais EJ, Tran VA, Johnston SN, Darris KR, Roupas AJ, Sessions GA, Shapiro IM, Diekman BO, Risbud MV. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun. 2021 Sep 3;12(1):5213.(托马斯杰斐逊大学悉尼坎摩尔医学院Makarand V. Risbud团队)


六、Bone and Cartilage Remodeling (骨和软骨重建)


参考文献:

12. McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, Kyaw W, Pathmanandavel K, Grootveld AK, Moran I, Butt D, Nguyen A, Corr A, Warren S, Biro M, Butterfield NC, Guilfoyle SE, Komla-Ebri D, Dack MRG, Dewhurst HF, Logan JG, Li Y, Mohanty ST, Byrne N, Terry RL, Simic MK, Chai R, Quinn JMW, Youlten SE, Pettitt JA, Abi-Hanna D, Jain R, Weninger W, Lundberg M, Sun S, Ebetino FH, Timpson P, Lee WM, Baldock PA, Rogers MJ, Brink R, Williams GR, Bassett JHD, Kemp JP, Pavlos NJ, Croucher PI, Phan TG. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell.2021 Apr 1;184(7):1940.(澳大利亚加文医学研究所Peter I. Croucher团队联合新南威尔士大学医学院的Tri Giang Phan团队)

13. Arandjelovic S, Perry JSA, Zhou M, Ceroi A, Smirnov I, Walk SF, Shankman LS, Cambré I, Onengut-Gumuscu S, Elewaut D, Conrads TP, Ravichandran KS. ELMO1 signaling is a promoter of osteoclast function and bone loss. Nat Commun. 2021 Aug 17;12(1):4974.(弗吉尼亚大学癌症生物学和卡特免疫中心Kodi S. Ravichandran团队)

14. Sivaraj KK, Majev PG, Jeong HW, Dharmalingam B, Zeuschner D, Schröder S, Bixel MG, Timmen M, Stange R, Adams RH. Mesenchymal stromal cell-derived septoclasts resorb cartilage during developmental ossification and fracture healing. Nat Commun. 2022 Jan 28;13(1):571.(德国Münster大学医学院马克斯普朗克分子生物医学研究所Ralf H. Adams团队)



2022

JBJS


七、Pathological Bone Formation (病理性骨形成)


参考文献:

15. Jin W, Lin X, Pan H, Zhao C, Qiu P, Zhao R, Hu Z, Zhou Y, Wu H, Chen X, Ouyang H, Xie Z, Tang R. Engineered osteoclasts as living treatment materials for heterotopic ossification therapy. Nat Commun. 2021 Nov 3;12(1):6327.(浙江大学唐睿康/谢志坚团队)

16. Shao F, Liu Q, Zhu Y, Fan Z, Chen W, Liu S, Li X, Guo W, Feng GS, Yu H, Xu Q, Sun Y. Targeting chondrocytes for arresting bony fusion in ankylosing spondylitis. Nat Commun. 2021 Nov 11;12(1):6540.(南京大学孙洋/徐强团队联合南京儿童医院俞海国团队)


八、Cognitive Decline and Bone Health (认知衰退与骨骼健康)


参考文献:

17. Bliuc D, Tran T, Adachi JD, Atkins GJ, Berger C, van den Bergh J, Cappai R, Eisman JA, van Geel T, Geusens P, Goltzman D, Hanley DA, Josse R, Kaiser S, Kovacs CS, Langsetmo L, Prior JC, Nguyen TV, Solomon LB, Stapledon C, Center JR; Canadian Multicentre Osteoporosis Study (CaMos) Research Group. Cognitive decline is associated with an accelerated rate of bone loss and increased fracture risk in women: a prospective study from the Canadian Multicentre Osteoporosis Study. J Bone Miner Res. 2021 Nov;36(11):2106-15.(澳大利亚加文医学研究所Dana Bliuc团队)

18. Guo HH, Xiong L, Pan JX, Lee D, Liu K, Ren X, Wang B, Yang X, Cui S, Mei L, Xiong WC. Hepcidin contributes to Swedish mutant APP-induced osteoclastogenesis and trabecular bone loss. Bone Res. 2021 Jun 9;9(1):31.(凯斯西储大学医学院神经科学系熊文诚/梅林团队)


九、Vitamin D Supplementation and Bone Health (补充维生素D与骨骼健康)


参考文献:

19. LeBoff MS, Chou SH, Ratliff KA, Cook NR, Khurana B, Kim E, Cawthon PM, Bauer DC, Black D, Gallagher JC, Lee IM, Buring JE, Manson JE. Supplemental vitamin D and incident fractures in midlife and older adults. N Engl J Med. 2022 Jul 28;387(4):299-309.(布莱根妇女医院Meryl S. LeBoff团队)

20. Gaffney-Stomberg E, Hughes JM, Guerriere KI, Staab JS, Cable SJ, Bouxsein ML, McClung JP. Once daily calcium (1000 mg) and vitamin D (1000 IU) supplementation during military training prevents increases in biochemical markers of bone resorption but does not affect tibial microarchitecture in Army recruits. Bone. 2022 Feb;155:116269.(美国环境医学研究所Erin Gaffney-Stomberg团队)




孙洋/徐强团队意外发现CD4-Cre;SHP2f/f小鼠自7月龄自发强直性脊柱炎样骨病变,表现为膝关节以及脊柱、骶髂等中轴关节僵直和骨融合。通过T细胞转输、骨髓移植以及Lck-Cre;SHP2f/f小鼠构建等实验排除了T细胞和其他免疫细胞对于骨病变的致病作用,并在随后使用mTmG荧光示踪技术发现CD4-Cre介导了部分软骨细胞中SHP2的敲除。这些软骨细胞异常增殖,并通过BMP6/pSmad1/5信号通路促进病理性异位成骨,进而导致骨赘形成和关节强直;使用索尼德吉(Smo抑制剂,商品名Odomzo,诺华研发的基底细胞癌的上市药)可显著抑制小鼠异位骨化,改善强直性脊柱炎样骨病变。

该研究首次揭示了骨骺生长板闭合延迟可致强直性脊柱炎骨病变的崭新发病机制,打破了强直性脊柱炎发病机制的固有认知,并提出了靶向软骨细胞抑制病理性成骨的治疗新策略。

      强直性脊柱炎的异位骨化目前无药可用,孙洋/徐强团队的发现对于阐明强直性脊柱炎骨融合背后的生物学机制提供了重要线索,开辟了强直性脊柱炎异位骨化药物研发的新途径。



【研究背后的故事——七年磨一剑】



2016级博士研究生邵粉丽在条件性敲除小鼠饲养过程中,偶然发现小鼠自发出现骨关节融合导致小鼠活动受限,得到导师及时肯定并鼓励后开启了强直性脊柱炎(以下简称强直)发病机制的探索之路。鉴于小鼠为CD4-Cre介导的特异性Ptpn11基因敲除鼠,且炎症一直是临床强直的诱因之一,T细胞免疫一开始就成为机制探索的重中之重。然而经历多次长达一年周期的实验,开展的T细胞测序、T细胞转输以及骨髓移植等均以得到阴性结果而告终,该课题陷于深深的低谷,T细胞甚至免疫细胞并不是模型发病的关键因素。一年复一年的推演与验证、失败与彷徨,邵粉丽并没有气馁,实事求是、探索真理,致力于为临床强直患者找到“除根儿”的治疗方法。邵粉丽反复分析实验结果,在失败中抽丝剥茧寻找新的可能。在骨髓移植模型中发现实质细胞区别于造血系统的作用,通过小鼠体内荧光示踪、反向验证以及临床样本有力地证实了骺软骨闭合延迟导致的不均衡软骨内成骨在强直骨融合过程中发挥着关键作用。这有别于现阶段临床强直主流治疗方向——炎症,也解释了临床上强直抗炎不能显著阻滞新骨生成与骨融合进程的现状。强直中炎症或其他因素引发的异位成骨一旦启动,单纯抑制炎症已不足以阻止骨病变进程。因此提出强直骨融合的新治疗策略——通过靶向软骨抑制其后续的成骨过程阻断异位骨化和骨融合进程,相关成果历时七年发表在Nature Communications上。邵粉丽历经硕士、博士和博后三个阶段,得到了极大的锻炼与成长,也坚定了她继续从事强直研究的决心。目前已入职南京中医药大学,获校级特聘教授C岗位,立志从中医药宝库中筛选治疗强直的新型候选药物。


感兴趣可进一步延伸阅读:

专家点评Nat Commun | 孙洋/徐强团队揭示强直性脊柱炎骨融合的新机制及其靶向治疗策略 


参考文献


1. Fenli Shao, Qianqian Liu, Yuyu Zhu, Zhidan Fan, Shijia Liu, Wenjun Chen, Xiaohui Li, Wenjie Guo, Gen-Sheng Feng, Haiguo Yu, Qiang Xu, Yang Sun. Targeting chondrocytes for arresting bony fusion in ankylosing spondylitis. Nat Commun 2021; 12(1): 6540.

2. Zbigniew Gugala. What's New in Musculoskeletal Basic Science. J Bone Joint Surg Am 2022; 104(23): 2047-2052.