10650
当前位置: 首页   >  成果及论文
成果及论文

代表论文

2024年

107. Shi Z, Gao Z, Zhuang X, et al. Dynamic Covalent Hydrogel as a Single‐dose Vaccine Adjuvant for Sustained Antigen Release and Significantly Elevated Humoral Immunity[J]. Advanced Healthcare Materials, 2024: 2400886. https://doi.org/10.1002/adhm.202400886

106. Ji G, Zhao J, Si X, et al. Targeting bacterial metabolites in tumor for cancer therapy: An alternative approach for targeting tumor-associated bacteria[J]. Advanced Drug Delivery Reviews, 2024: 115345. https://doi.org/10.1016/j.addr.2024.115345

105. Lv K, Ma S, Liu L, et al. Peptide nanovaccine conjugated via a retro-Diels–Alder reaction linker for overcoming the obstacle in lymph node penetration and eliciting robust cellular immunity[J]. Journal of Materials Chemistry B, 2024. https://doi.org/10.1039/d4tb00674g

104. Ma S, Yao H, Si X, et al. Orally available dextran-aspirin nanomedicine modulates gut inflammation and microbiota homeostasis for primary colorectal cancer therapy[J]. Journal of Controlled Release, 2024. https://doi.org/10.1016/j.jconrel.2024.05.002

103. Zhao H, Ma S, Qi Y, et al. A polyamino acid-based phosphatidyl polymer library for in vivo mRNA delivery with spleen targeting ability[J]. Materials Horizons, 2024. https://doi.org/10.1039/d3mh02066e

102. Chen H, Huang Z, Li J, et al. Hit-and-run vaccine system that overcomes limited neoantigen epitopes for efficient broad antitumor response[J]. Science Bulletin, 2024. https://doi.org/10.1016/j.scib.2024.01.039

101. Liu T, Si X, Liu L, et al. Injectable Nano-in-Gel Vaccine for Spatial and Temporal Control of Vaccine Kinetics and Breast Cancer Postsurgical Therapy[J]. ACS nano, 2024. https://doi.org/10.1021/acsnano.3c08376

2023年

100. Huang Z, Zhuang X, Liu L, et al. Modularized viromimetic polymer nanoparticle vaccines (VPNVaxs) to elicit durable and effective humoral immune responses[J]. National Science Review, 2024, 11(3): nwad310. https://doi.org/10.1093/nsr/nwad310

99. Gao Y, Zhao H, Zhao J, et al. Polymer-based synthetic oncolytic virus-like nanoparticles for cancer immunotherapy[J]. Science China Chemistry, 2023, 66(12): 3576-3586. https://doi.org/10.1007/s11426-023-1841-8

98. Zhao J, Liu L, Wang Y, et al. Heterocyclic Molecules Tethered Branched Polymers with Innate Immune Stimulating Activity[J]. Ccs Chemistry, 2023: 1-11. https://doi.org/10.31635/ccschem.023.202303214

97. Liu L, Zhao J, Huang Z, et al. Mannan-decorated STING-activating vaccine carrier for spatial coordinative stimulating antigen-specific immune responses[J]. Fundamental Research, 2023. https://doi.org/10.1016/j.fmre.2023.03.018

96. Si X, Ji G, Ma S, et al. Comprehensive evaluation of biopolymer immune implants for peritoneal metastasis carcinoma therapy[J]. Journal of Controlled Release, 2023, 353: 289-302. https://doi.org/10.1016/j.jconrel.2022.11.028

95. 朱真逸, 宋万通, 陈学思. 高分子免疫佐剂材料[J]. 高分子学报, 2023, 54(5):534-549.

https://doi:10.11777/j.issn1000-3304.2022.22403    

94. 司星辉, 宋万通, 陈学思. 免疫治疗药物传输材料[J].高分子学报, 2023, 54(6): 837-852.

https://doi:10.11777/j.issn1000-3304.2022.22401

2022年

93. Cao Y, Song W, Chen X. Multivalent sialic acid materials for biomedical applications[J]. Biomaterials Science, 2023. https://doi.org/10.1039/D2BM01595A

92. 宋万通, 陈学思.高分子疫苗载体研究现状与前沿[J].中国基础科学,2022,24(01):7-12. 

91. Zhao J, Song W, Tang Z, et al. Macromolecular Effects in Medicinal Chemistry※[J]. Acta Chimica Sinica, 2022, 80(4): 563. http://sioc-journal.cn/Jwk_hxxb/EN/10.6023/A21120602

90. Si X, Ji G, Ma S, et al. Comprehensive evaluation of biopolymer immune implants for peritoneal metastasis carcinoma therapy[J]. Journal of Controlled Release, 2023, 353: 289-302. https://doi.org/10.1016/j.jconrel.2022.11.028

89. Gao Y, Zhao J, Huang Z, et al. In Situ Reprogramming of Tumors for Activating the OX40/OX40 Ligand Checkpoint Pathway and Boosting Antitumor Immunity[J]. ACS Biomaterials Science & Engineering, 2022. https://doi.org/10.1021/acsbiomaterials.1c01637

88. Dong S, Ma S, Chen H, et al. Nucleobase-crosslinked poly (2-oxazoline) nanoparticles as paclitaxel carriers with enhanced stability and ultra-high drug loading capacity for breast cancer therapy[J]. Asian Journal of Pharmaceutical Sciences, 2022. https://doi.org/10.1016/j.ajps.2022.04.006

87. Zhao J, Xu Y, Ma S, et al. A Minimalist Binary Vaccine Carrier for Personalized Postoperative Cancer Vaccine Therapy[J]. Advanced Materials, 2022, 34(10): 2109254. https://doi.org/10.1002/adma.202109254

86. Xu Y, Ma S, Zhao J, et al. Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity[J]. Biomaterials, 2022, 284: 121489. https://doi.org/10.1016/j.biomaterials.2022.121489

85. Shen L, Li J, Liu Q, et al. Nano-trapping CXCL13 reduces regulatory B cells in tumor microenvironment and inhibits tumor growth[J]. Journal of Controlled Release, 2022, 343: 303-313. https://doi.org/10.1016/j.jconrel.2022.01.039

2021年

84. Dong S, Tang Y, He P, et al. Hydrophobic modified poly (l‐glutamic acid) graft copolymer micelles with ultrahigh drug loading capacity for anticancer drug delivery[J]. Polymer International, 2022, 71(4): 487-494. https://doi.org/10.1002/pi.6342

83. Qin Y, Lao Y H, Wang H, et al. Combatting Helicobacter pylori with oral nanomedicine[J]. Journal of Materials Chemistry B, 2021. https://doi.org/10.1039/D1TB02038B

82. Yu Z, Xu Y, Yao H, et al. A simple and general strategy for postsurgical personalized cancer vaccine therapy based on an injectable dynamic covalent hydrogel[J]. Biomaterials Science, 2021, 9(20): 6879-6888. https://doi.org/10.1039/D1BM01000J

81. Zhang J, Hu K, Di L, et al. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health[J]. Advanced Drug Delivery Reviews, 2021, 178: 113964. https://doi.org/10.1016/j.addr.2021.113964

80. Ji G, Si X, Dong S, et al. Manipulating Liver Bile Acid Signaling by Nanodelivery of Bile Acid Receptor Modulators for Liver Cancer Immunotherapy[J]. Nano Letters, 2021, 21(16): 6781-6791. https://doi.org/10.1021/acs.nanolett.1c01360

79. Xu Y, Ma S, Zhao J, et al. Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy[J]. Nano Research, 2022, 15(2): 1183-1192. https://doi.org/10.1007/s12274-021-3622-6

78. Si X, Ji G, Ma S, et al. In–Situ‐Sprayed Dual‐Functional Immunotherapeutic Gel for Colorectal Cancer Postsurgical Treatment[J]. Advanced Healthcare Materials, 2021, 10(20): 2100862.  https://doi.org/10.1002/adhm.202100862

77. Wang S, Guo W, Zhao Y, et al. JQ1 Synergize with Anti-CD47 Antibody to Enhance the Function of Macrophages and Repress the Progression of Burkitt Lymphoma[J]. 2021. 

76. Ma S, Xu Y, Song W. Functional bionanomaterials for cell surface engineering in cancer immunotherapy[J]. APL bioengineering, 2021, 5(2): 021506. https://doi.org/10.1063/5.0045945

75. Song W. Functional bionanomaterials help optimize surface engineering to improve cancer immunotherapy[J]. 2021. https://doi.org/10.1063/10.0004978

74. Liu Z, Wang S, Guo W, et al. Cisplatin Loaded Poly (L-glutamic acid)-g-Methoxy Polyethylene Glycol Complex Nanoparticles Combined with Gemcitabine Presents Improved Safety and Lasting Anti-Tumor Efficacy in a Murine Xenograft Model of Human Aggressive B Cell Lymphoma[J]. Journal of Biomedical Nanotechnology, 2021, 17(4): 652-661. https://doi.org/10.1166/jbn.2021.3060

73. Ji G, Zhang Y, Si X, et al. Biopolymer immune implants’ sequential activation of innate and adaptive immunity for colorectal cancer postoperative immunotherapy[J]. Advanced Materials, 2021, 33(3): 2004559. https://doi.org/10.1002/adma.202004559

72. Zhang Y, Ma S, Liu X, et al. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy[J]. Advanced Materials, 2021, 33(7): 2007293. https://doi.org/10.1002/adma.202007293

71. Zhao J, Ma S, Xu Y, et al. In situ activation of STING pathway with polymeric SN38 for cancer chemoimmunotherapy[J]. Biomaterials, 2021, 268: 120542. https://doi.org/10.1016/j.biomaterials.2020.120542

2020年

70. Ji G, Ma L, Yao H, et al. Precise delivery of obeticholic acid via nanoapproach for triggering natural killer T cell-mediated liver cancer immunotherapy[J]. Acta Pharmaceutica Sinica B, 2020, 10(11): 2171-2182. https://doi.org/10.1016/j.apsb.2020.09.004

69. Xu Y, Ma S, Si X, et al. Polyethyleneimine‐CpG Nanocomplex as an In Situ Vaccine for Boosting Anticancer Immunity in Melanoma[J]. Macromolecular Bioscience, 2021, 21(2): 2000207. https://doi.org/10.1002/mabi.202000207

68. Xiong Y, Song W, Shen L, et al. Oral metformin and polymetformin reprogram immunosuppressive microenvironment and boost immune checkpoint inhibitor therapy in colorectal cancer[J]. Advanced Therapeutics, 2020, 3(12): 2000168. https://doi.org/10.1002/adtp.202000168

67. Si X, Song W, Yang S, et al. Glucose and pH Dual‐Responsive Nanogels for Efficient Protein Delivery[J]. Macromolecular bioscience, 2019, 19(9): 1900148. https://doi.org/10.1002/mabi.201900148

66. Si X, Ji G, Ma S, et al. Biodegradable implants combined with immunogenic chemotherapy and immune checkpoint therapy for peritoneal metastatic carcinoma postoperative treatment[J]. ACS Biomaterials Science & Engineering, 2020, 6(9): 5281-5289. https://doi.org/10.1021/acsbiomaterials.0c00840

65. Guo W, Song Y, Song W, et al. Co-delivery of doxorubicin and curcumin with polypeptide nanocarrier for synergistic lymphoma therapy[J]. Scientific Reports, 2020, 10(1): 1-16. http://creativecommons.org/licenses/by/4.0/.

64. Huang Z, Song W, Chen X. Supramolecular self-assembled nanostructures for cancer immunotherapy[J]. Frontiers in Chemistry, 2020, 8: 380. https://doi.org/10.3389/fchem.2020.00380

63. Ma S, Song W, Xu Y, et al. A ROS-responsive aspirin polymeric prodrug for modulation of tumor microenvironment and cancer immunotherapy[J]. CCS Chemistry, 2020, 2(6): 390-400. https://doi.org/10.31635/ccschem.020.202000140

62. Ma S, Song W, Xu Y, et al. Rationally designed polymer conjugate for tumor-specific amplification of oxidative stress and boosting antitumor immunity[J]. Nano Letters, 2020, 20(4): 2514-2521. https://doi.org/10.1021/acs.nanolett.9b05265

61. Song W, Das M, Chen X. Nanotherapeutics for immuno-oncology: a crossroad for new paradigms[J]. Trends in cancer, 2020, 6(4): 288-298. https://doi.org/10.1016/j.trecan.2020.01.011

60. Si X, Ma S, Xu Y, et al. Hypoxia-sensitive supramolecular nanogels for the cytosolic delivery of ribonuclease A as a breast cancer therapeutic[J]. Journal of Controlled Release, 2020, 320: 83-95. https://doi.org/10.1016/j.jconrel.2020.01.021

2019年

59. Song W, Anselmo A C, Huang L. Nanotechnology intervention of the microbiome for cancer therapy[J]. Nature nanotechnology, 2019, 14(12): 1093-1103. https://doi.org/10.1038/s41565-019-0589-5

58. Ma S, Song W, Xu Y, et al. Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy[J]. Biomaterials, 2020, 232: 119676. https://doi.org/10.1016/j.biomaterials.2019.119676

57. Zhang J, Shen L, Li X, et al. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer[J]. ACS nano, 2019, 13(11): 12511-12524. https://doi.org/10.1021/acsnano.9b02875

56. Jiang J, Shen N, Song W, et al. Combretastatin A4 nanodrug combined plerixafor for inhibiting tumor growth and metastasis simultaneously[J]. Biomaterials science, 2019, 7(12): 5283-5291. https://doi.org/10.1039/C9BM01418G

55. Feng X, Xu W, Li Z, et al. Immunomodulatory nanosystems[J]. Advanced science, 2019, 6(17): 1900101. https://doi.org/10.1002/advs.201900101

54. Feng X, Xu W, Li Z, et al. Disease Immunotherapy: Immunomodulatory Nanosystems (Adv. Sci. 17/2019)[J]. Advanced Science, 2019, 6(17): 1970100. https://doi.org/10.1002/advs.201970100

53. Leong H S, Butler K S, Brinker C J, et al. On the issue of transparency and reproducibility in nanomedicine[J]. Nature nanotechnology, 2019, 14(7): 629-635. https://doi.org/10.1038/s41565-019-0496-9

52. Si X, Song W, Yang S, et al. Glucose and pH Dual‐Responsive Nanogels for Efficient Protein Delivery[J]. Macromolecular bioscience, 2019, 19(9): 1900148. https://doi.org/10.1002/mabi.201900148

51. Leong H S, Butler K S, Brinker C J, et al. On the issue of transparency and reproducibility in nanomedicine[J]. Nature nanotechnology, 2019, 14(7): 629-635. https://doi.org/10.1038/s41565-019-0496-9

50. Song W, Liu R, Huang L. Response to Comment on “Trapping of Lipopolysaccharide to Promote Immunotherapy against Colorectal Cancer and Attenuate Liver Metastasis”[J]. Advanced Materials, 2019, 31(28): 1902569. https://doi.org/10.1002/adma.201902569

49. Leong H S, Butler K S, Brinker C J, et al. On the issue of transparency and reproducibility in nanomedicine[J]. Nature nanotechnology, 2019, 14(7): 629-635. https://doi.org/10.1038/s41565-019-0496-9

48. Wang Y, Yu H, Zhang D, et al. Co-administration of combretastatin A4 nanoparticles and sorafenib for systemic therapy of hepatocellular carcinoma[J]. Acta biomaterialia, 2019, 92: 229-240. https://doi.org/10.1016/j.actbio.2019.05.028

47. Liu M, Song W, Huang L. Drug delivery systems targeting tumor-associated fibroblasts for cancer immunotherapy[J]. Cancer letters, 2019, 448: 31-39. https://doi.org/10.1016/j.canlet.2019.01.032

46. Song W, Das M, Xu Y, et al. Leveraging biomaterials for cancer immunotherapy: targeting pattern recognition receptors[J]. Materials Today Nano, 2019, 5: 100029. https://doi.org/10.1016/j.mtnano.2019.100029

45. An S, Tiruthani K, Wang Y, et al. Locally Trapping the C‐C Chemokine Receptor Type 7 by Gene Delivery Nanoparticle Inhibits Lymphatic Metastasis Prior to Tumor Resection[J]. Small, 2019, 15(9): 1805182. https://doi.org/10.1002/smll.201805182

44. Chen Y, Song W, Shen L, et al. Vasodilator hydralazine promotes nanoparticle penetration in advanced desmoplastic tumors[J]. ACS nano, 2019, 13(2): 1751-1763. https://doi.org/10.1021/acsnano.8b07830

43. Wang Y, Yu H, Zhang D, et al. Co-administration of combretastatin A4 nanoparticles and sorafenib for systemic therapy of hepatocellular carcinoma[J]. Acta biomaterialia, 2019, 92: 229-240. https://doi.org/10.1016/j.actbio.2019.05.028

2018年

42. Song W, Tiruthani K, Wang Y, et al. Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis[J]. Advanced Materials, 2018, 30(52): 1805007. https://doi.org/10.1002/adma.201805007

41. Shen L, Li J, Liu Q, et al. Local blockade of interleukin 10 and CXC motif chemokine ligand 12 with nano-delivery promotes antitumor response in murine cancers[J]. Acs Nano, 2018, 12(10): 9830-9841. https://doi.org/10.1021/acsnano.8b00967

40. Wang Y, Song W, Hu M, et al. Nanoparticle‐mediated HMGA1 silencing promotes lymphocyte infiltration and boosts checkpoint blockade immunotherapy for cancer[J]. Advanced Functional Materials, 2018, 28(36): 1802847. https://doi.org/10.1002/adfm.201802847

39. Yang C, Song W, Zhang D, et al. Poly (l-glutamic acid)-g-methoxy poly (ethylene glycol)-gemcitabine conjugate improves the anticancer efficacy of gemcitabine[J]. International Journal of Pharmaceutics, 2018, 550(1-2): 79-88. https://doi.org/10.1016/j.ijpharm.2018.08.037

38. Xiao H, Yan L, Dempsey E M, et al. Recent progress in polymer-based platinum drug delivery systems[J]. Progress in Polymer Science, 2018, 87: 70-106. https://doi.org/10.1016/j.progpolymsci.2018.07.004

37. Yang C, Xue B, Song W, et al. Reducing the toxicity of amphotericin B by encapsulation using methoxy poly (ethylene glycol)-b-poly (l-glutamic acid-co-l-phenylalanine)[J]. Biomaterials science, 2018, 6(8): 2189-2196. https://doi.org/10.1039/C8BM00506K

36. Song W, Shen L, Wang Y, et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap[J]. Nature communications, 2018, 9(1): 1-11. http://creativecommons.org/licenses/by/4.0/.

2017年

35. Wang G, Song W, Shen N, et al. Curcumin-encapsulated polymeric nanoparticles for metastatic osteosarcoma cells treatment[J]. Science China Materials, 2017, 60(10): 995-1007. https://doi.org/10.1007/s40843-017-9107-x

34. Song W, Musetti S N, Huang L. Nanomaterials for cancer immunotherapy[J]. Biomaterials, 2017, 148: 16-30. https://doi.org/10.1016/j.biomaterials.2017.09.017

33. Wang G, Song W, Yang S, et al. Synergistic treatment of triple-negative breast cancer by doxorubicin and thioridazine and its nano-formulation[J]. Journal of Controlled Release, 2017, 259: e37-e38. https://doi.org/10.1016/j.jconrel.2017.03.100

32. Yang S, Shen N, Song W, et al. A novel monomethylauristatin E prodrug for malignant cancer targeted therapy[J]. Journal of Controlled Release, 2017, 259: e120. https://doi.org/10.1016/j.jconrel.2017.03.248

31. Liu T, Zhang D, Song W, et al. A poly (l-glutamic acid)-combretastatin A4 conjugate for solid tumor therapy: Markedly improved therapeutic efficiency through its low tissue penetration in solid tumor[J]. Acta biomaterialia, 2017, 53: 179-189. https://doi.org/10.1016/j.actbio.2017.02.001

30. Lv S, Tang Z, Song W, et al. Inhibiting solid tumor growth in vivo by non‐tumor‐penetrating nanomedicine[J]. Small, 2017, 13(12): 1600954. https://doi.org/10.1002/smll.201600954

2016年

29. Lin L, Chen J, Guo Z, et al. Exploring the in vivo fates of RGD and PEG modified PEI/DNA nanoparticles by optical imaging and optoacoustic imaging[J]. RSC advances, 2016, 6(113): 112552-112561. https://doi.org/10.1039/C6RA23647B

28. Niu Y, Song W, Zhang D, et al. Functional computer-to-plate near-infrared absorbers as highly efficient photoacoustic dyes[J]. Acta Biomaterialia, 2016, 43: 262-268. https://doi.org/10.1016/j.actbio.2016.07.026

27. Song W, Tang Z, Zhang D, et al. Solid tumor therapy using a cannon and pawn combination strategy[J]. Theranostics, 2016, 6(7): 1023. http://ivyspring.com/terms

26. Song W, Tang Z, Shen N, et al. Combining disulfiram and poly (l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance[J]. Journal of Controlled Release, 2016, 231: 94-102. https://doi.org/10.1016/j.jconrel.2016.02.039

25. Yu H, Tang Z, Li M, et al. Cisplatin loaded poly (L-glutamic acid)-g-methoxy poly (ethylene glycol) complex nanoparticles for potential cancer therapy: preparation, in vitro and in vivo evaluation[J]. Journal of Biomedical Nanotechnology, 2016, 12(1): 69-78. https://doi.org/10.1166/jbn.2016.2152

2015年

24. Song W, Tang Z, Zhang D, et al. A cooperative polymeric platform for tumor-targeted drug delivery[J]. Chemical science, 2016, 7(1): 728-736. https://doi.org/10.1039/C5SC01698C

23. Song W, Tang Z, Lei T, et al. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2016, 12(2): 377-386. https://doi.org/10.1016/j.nano.2015.10.022

22. Lv S, Tang Z, Li M, et al. PEG-polypeptide conjugated with LHRH as an efficient vehicle for targeted delivery of doxorubicin to breast cancer[J]. Journal of controlled release: official journal of the Controlled Release Society, 2015, 213: e99. https://pubmed.ncbi.nlm.nih.gov/27005267/

21. Yu H, Tang Z, Song W, et al. Co-administration of iRGD enhancing the anticancer efficacy of cisplatin-loaded polypeptide nanoparticles[J]. Journal of controlled release: official journal of the Controlled Release Society, 2015, 213: e145-6. https://doi.org/10.1016/j.jconrel.2015.05.246

20. Song W, Tang Z, Zhang D, et al. Coadministration of vascular disrupting agents and nanomedicines to eradicate tumors from peripheral and central regions[J]. Small, 2015, 11(31): 3755-3761. https://doi.org/10.1002/smll.201500324

19. Yu H, Tang Z, Zhang D, et al. Poly (ornithine‐co‐arginine‐co‐glycine‐co‐aspartic Acid): Preparation via NCA Polymerization and its Potential as a Polymeric Tumor‐Penetrating Agent[J]. Macromolecular Bioscience, 2015, 15(6): 829-838. https://doi.org/10.1002/mabi.201500040

2014年

18. Yu H, Tang Z, Zhang D, et al. Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly (L-glutamic acid)-g-methoxy poly (ethylene glycol) complex nanoparticles for tumor therapy[J]. Journal of Controlled Release, 2015, 205: 89-97. https://doi.org/10.1016/j.jconrel.2014.12.022

17. Song W, Tang Z, Zhang D, et al. Comprehensive studies of pharmacokinetics and biodistribution of indocyanine green and liposomal indocyanine green by multispectral optoacoustic tomography[J]. RSC advances, 2015, 5(5): 3807-3813. https://doi.org/10.1039/C4RA09735A

16. Li M, Tang Z, Lin J, et al. Synergistic Antitumor Effects of Doxorubicin‐Loaded Carboxymethyl Cellulose Nanoparticle in Combination with Endostar for Effective Treatment of Non‐Small‐Cell Lung Cancer[J]. Advanced healthcare materials, 2014, 3(11): 1877-1888. https://doi.org/10.1002/adhm.201400108

15. Lv S, Tang Z, Zhang D, et al. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel[J]. Journal of controlled release, 2014, 194: 220-227. https://doi.org/10.1016/j.jconrel.2014.09.009

14. Lv S, Tang Z, Li M, et al. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer[J]. Biomaterials, 2014, 35(23): 6118-6129. https://doi.org/10.1016/j.biomaterials.2014.04.034

13. Haiyang Y, Zhaohui T, Wantong S, et al. Current Status and Future Prospects of Polymeric Nanocarrier for Tumor Targeting[J]. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2014, 35(5): 903-916. http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20130849

12. Lv S, Song W, Tang Z, et al. Charge-conversional PEG-polypeptide polyionic complex nanoparticles from simple blending of a pair of oppositely charged block copolymers as an intelligent vehicle for efficient antitumor drug delivery[J]. Molecular pharmaceutics, 2014, 11(5): 1562-1574. https://doi.org/10.1021/mp4007387

11. Song W, Tang Z, Zhang D, et al. Anti-tumor efficacy of c (RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin[J]. Biomaterials, 2014, 35(9): 3005-3014. https://doi.org/10.1016/j.biomaterials.2013.12.018

10. Li M, Tang Z, Lv S, et al. Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin[J]. Biomaterials, 2014, 35(12): 3851-3864. https://doi.org/10.1016/j.biomaterials.2014.01.018

2013年

9. Song W, Tang Z, Li M, et al. Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects[J]. Acta Biomaterialia, 2014, 10(3): 1392-1402. https://doi.org/10.1016/j.actbio.2013.11.026

8. Li M, Lv S, Tang Z, et al. Polypeptide/D oxorubicin Hydrochloride Polymersomes Prepared Through Organic Solvent‐free Technique as a Smart Drug Delivery Platform[J]. Macromolecular bioscience, 2013, 13(9): 1150-1162. https://doi.org/10.1002/mabi.201300222

7. Lv S, Li M, Tang Z, et al. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy[J]. Acta biomaterialia, 2013, 9(12): 9330-9342. https://doi.org/10.1016/j.actbio.2013.08.015

6. Li M, Song W, Tang Z, et al. Nanoscaled poly (L-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer[J]. ACS Applied Materials & Interfaces, 2013, 5(5): 1781-1792. https://doi.org/10.1021/am303073u

5. Yu S, He C, Ding J, et al. pH and reduction dual responsive polyurethane triblock copolymers for efficient intracellular drug delivery[J]. Soft Matter, 2013, 9(9): 2637-2645. https://doi.org/10.1039/C2SM27616J

4. Li M, Tang Z, Sun H, et al. pH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery[J]. Polymer Chemistry, 2013, 4(4): 1199-1207. https://doi.org/10.1039/C2PY20871G

2012年

3. Song W, Li M, Tang Z, et al. Methoxypoly (ethylene glycol)‐block‐Poly (L‐glutamic acid)‐loaded cisplatin and a combination with iRGD for the treatment of non‐small‐cell lung cancers[J]. Macromolecular bioscience, 2012, 12(11): 1514-1523. https://doi.org/10.1002/mabi.201200145

2. Song W, Tang Z, Li M, et al. Tunable pH‐sensitive poly (β‐amino ester) s synthesized from primary amines and diacrylates for intracellular drug delivery[J]. Macromolecular bioscience, 2012, 12(10): 1375-1383.  https://doi.org/10.1002/mabi.201200122

1. Song W, Xiao C, Cui L, et al. Facile construction of functional biosurface via SI-ATRP and “click glycosylation”[J]. Colloids and Surfaces B: Biointerfaces, 2012, 93: 188-194. https://doi.org/10.1016/j.colsurfb.2012.01.002

--------------------------------------------------------------------------------------------------------------------------------------------------------

专利技术

1.