767
当前位置: 首页   >  成果及论文
成果及论文

1.  Identification and validation of major and stable quantitative trait locus for falling number in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2024,137: 83 (中科院大类TOP期刊)

2.  Global Analysis of the WOX Transcription Factor Family in Akebia trifoliata. Curr. Issues Mol. Biol. 2024, 46, 11–24.

3. Genome-Wide Analysis of the Polygalacturonase Gene Family Sheds Light on the Characteristics, Evolutionary History, and Putative Function of Akebia trifoliata. Int. J. Mol. Sci. 2023, 24, 16973 (中科院大类TOP期刊)

4. Identification and Validation of a Stable Major-Effect Quantitative Trait Locus for Kernel Number per Spike on Chromosome 2D in Wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2023, 24, 14289 (中科院大类TOP期刊)

5. Genome-wide SSR marker analysis to understand the genetic diversity and population sub-structure in Akebia trifoliata. Genetic Resources and Crop Evolution 2023, 70: 2741-2754

6.  Genome-wide Identification of Superoxide Dismutase and Expression in Response to Fruit Development and Biological Stress in Akebia trifoliata: A bioinformatics study. Antioxidants 2023, 12, 726

7. Identification of Photoperiod- and Phytohormone-Responsive DNA-Binding One Zinc Finger (Dof) Transcription Factors in Akebia trifoliata via Genome-Wide Expression Analysis. Wide Expression Analysis. Int. J. Mol. Sci. 2023, 24, 4973 (中科院大类TOP期刊)

8. Phenotypic characterization of the wheat temperature-sensitive leaf color mutant and physical mapping of mutant gene by reduced-representation sequencing. Plant Science, 2023, 111657. 

9. The chromosome-level genome of Akebia trifoliata as an important resource to study plant evolution and environmental adaptation in the Cretaceous. The Plant Journal, 2022, 112, 1316-1330 (中科院大类TOP期刊)

10. Characterization of the MADS-Box Gene Family in Akebia trifoliata and Their Evolutionary Events in Angiosperms. Genes, 2022, 13, 1777 

11.Development and Molecular Cytogenetic Characterization of a Novel Wheat-Rye T6RS.6AL Translocation Line from Secale cereale L. Qinling with Resistance to Stripe Rust and Powdery Mildew. Int. J. Mol. Sci. 2022, 23, 10495 (中科院大类TOP期刊)

12.Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors in Akebia trifoliata: A Bioinformatics Study. Genes, 2022, 13, 1540 

13. Identification of a stable major‑effect quantitative trait locus for pre‑harvest sprouting in common wheat (Triticum aestivum L.) via high‑density SNP‑based genotyping. Theoretical and Applied Genetics, 2022, 135, 4183-4195 (中科院大类TOP期刊

14. Molecular cytogenetic identification of new wheat-rye 6R, 6RS, and 6RL addition lines with resistance to stripe rust and powdery mildew. Front. Plant Sci. 2022, 13, 992016 (中科院大类TOP期刊)

15. Comparative Transcriptome Analysis Revealed Differential Gene Expression Involved in Wheat Leaf Senescence between Stay-Green and Non-Stay-Green Cultivars. Front. Plant Sci. 2022, (中科院大类TOP期刊)

16. Expression Profiles of Microsatellites in Fruit Tissues of Akebia trifoliata and Development of Efficient EST-SSR Markers. Genes, 2022, 13, 1451 

17. Molecular Cytogenetic and Physiological Characterization of a Novel WheatRye T1RS.1BL Translocation Line from Secale cereal L. Weining with Resistance to Stripe Rust and Functional “Stay Green” Trait. Int. J. Mol. Sci. 2022, 4646 (中科院大类TOP期刊)

18. Molecular cytogenetic characterization of novel 1RS.1BL translocation and complex chromosome translocation lines with stripe rust resistance. Int. J. Mol. Sci. 2022,2731 (中科院大类TOP期刊)

19.Characterization of microsatellites in the Akebia trifoliata genome and their transferability and development of a whole set of effective, polymorphic and physically mapped SSR markers. Front. Plant Sci. 2022, 860101 (中科院大类TOP期刊)

20.  Identification and validation of quantitative trait loci for functional stay green traits in common wheat (Triticum aestivum L.) via high-density SNP-based genotyping. Theoretical and Applied Genetics, 2022,135,1429-1441 (中科院大类TOP期刊

21.  Development and molecular cytogenetic characterization of novel primary wheat-rye 1RS.1BL translocation lines from multiple rye sources with resistance to stripe rust. Plant Disease, 2022, 106(8), 2191-2200 (中科院大类TOP期刊)

22. Development and characterization of novel wheat-rye 1RS•1BL translocation lines with high resistance to Puccinia striiformis f. sp. tritici. Phytopathology, 2022, 112: 1310-1315  (中科院大类TOP期刊)

23. Identification and characterization of NBS resistance genes in Akebia trifoliate. Front. Plant Sci. 2021,758559 (中科院大类TOP期刊)

24.Identification and Cloning of a CC-NBS-NBS-LRR Gene as a Candidate of Pm40 by Integrated Analysis of Both the Available Transcriptional Data and Published Linkage Mapping. Int. J. Mol. Sci. 2021, 22, 10239 

25.  QTL mapping and validation for kernel area and circumference in common wheat via high-density SNP-based genotyping. Front. Plant Sci. 2021, 12, 713890 (中科院大类TOP期刊)

26.  小麦单位面积穗数和粒长主效QTL 紧密连锁KASP标记的开发及其效应评价. 中国农业科学, 2021,54(14):2941-2951.

27. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nature Genetics, 2021,53, 574-584. (中科院大类TOP期刊)

28. Utilization of a Wheat55K SNP Array-derived high-density genetic map for high-resolution mapping of Quantitative Trait Loci for Important Kernel-related Traits in common wheat. Theoretical and Applied Genetics, 2021, 134: 807-821. (中科院大类TOP期刊

29. 1293份小麦品种(系)1RS/1BL易位和抗条锈病基因Yr41的分子检测. 山东农业科学, 2020,52(8):1-6.

30. Molecular and cytogenetic characterization of a wheat-rye 7BS.7RL translocation line with resistance to stripe rust, powdery mildew and Fusarium head blight. Phytopathology, 2020, 110(10):1713-1720 (中科院大类TOP期刊)

31. Resistance performance of wheat stripe rust resistance gene Yr41 and its effect on yield parameters in F2 populations under field conditions. Crop Protection, 2020,105168 

32.  The Polymorphisms of Oligonucleotide Probes in Wheat Cultivars Determined by ND-FISH. Molecules, 2019, 24, 1126

33. 高产小麦新品种-嘉农麦809.麦类作物学报,2019,39(10)

34. 广适性小麦新品种—川农32.麦类作物学报,2019,39(4).

35. Novel source of 1RS from Baili rye conferred high resistance to diseases and enhanced yield traits to common wheat. Mol Breeding, 2018, 38:101.

36. Utilization of a Wheat55K SNP Array for Mapping of Major QTL for Temporal Expression of the Tiller Number. Front. Plant Sci. 2018, 9:333

37.小麦分蘖成穗数相关分子标记在重组自交系(RIL)群体中的有效性验证及实用性评价.麦类作物学报, 2018, (1),8-15

38. Molecular mapping and genetic analysis of a QTL controlling spike formation rate and tiller number in wheat. Gene, 2017, 634, 15–21

39. Molecular Cytogenetic Characterization of Novel Wheat-rye T1RS.1BL Translocation Lines with High Resistance to Diseases and Great Agronomic Traits. Front. Plant Sci. 2017, 8:799. 

40. Targeted Segment Transfer from Rye Chromosome 2R to Wheat Chromosomes 2A, 2B, and 7B. Cytogenet Genome Res. 2017, 151(1):50-59 

41. 四川省第一个早播早熟型小麦新品种-川农30.麦类作物学报, 2017, 37(7)

42. QTL analysis for wheat falling number in a recombinant inbred line population segregated with 1BL/1RS translocation in a rainfed agricultural area of China. Euphytica, 2017, 213:235.

43. Physical Location of New PCR-Based Markers and Powdery Mildew Resistance Gene(s) on Rye (Secale cereale L.) Chromosome 4 Using 4R Dissection Lines. Front. Plant Sci. 2017, 8:1716. 

44.基于RIL群体的小麦籽粒性状与品质特性关系分析. 麦类作物学报,2017,37(9):1155-1160.

45.新育成的1RS.1BL初级易位系T956-13的育种价值. 2017, 麦类作物学报, (12):1534-1540.

46. De novo balanced complex chromosome rearrangements involving chromosomes 1B and 3B of wheat and 1R of rye. Genome, 2016, 59(12): 1076-1084. 

47. A Mutant with Expression Deletion of Gene Sec-1 in a 1RS.1BL Line and Its effect on Production Quality of Wheat. PLoS ONE, 2016,11(1): e0146943 

48.  Molecular Cytogenetic Characterization of New Wheat-Rye 1R(1B) Substitution and Translocation Lines from a Chinese Secale cereal L. Aigan with Resistance to Stripe Rust. PLoS ONE, 2016, 11(9): e0163642 (IF=3.057)

49.  高产抗病的大穗型小麦新品种川农29. 麦类作物学报, 2016 , 36 (10)

50. 小麦黑麦1BL.1RS易位系中1BL染色体臂的变异. 西北农林科技大学学报自然科学版, 2015, (6):73-78.

51.   1RS·1BL易位染色体对小麦品质特性及其地域稳定性的影响.麦类作物学报, 2015, 35(8):1050-1056.

52. Diversity resistance to Puccinia striiformis f. sp Tritici in rye chromosome arm 1RS expressed in wheat. Genetics & Molecular Research Gmr, 2014, 13(4):8783-8793.

53. 普通小麦穗发芽抗性相关分子标记在RIL群体中的验证与评价. 麦类作物学报, 2014, 34(4):435-442.

54. Genetic diversity of wheat–rye 1BL.1RS translocation lines derived from different wheat and rye sources. Euphytica, 2012, 183: 133-146.

55. 小麦抗白粉病基因Pm21的抑制基因.植物病理学报, 2012, 42(1): 57-64.

56.  高产抗逆协调型小麦新品种渝麦13. 麦类作物学报, 2012,32(3), 595-595.

57.  Evolutionary trends of microsatellites during the speciation process and phylogenetic relationships within the genus Secale. Genome, 2011, 54: 316–326.   

58.  1RS.1BL易位在川农号系列小麦新品种选育中的作用.麦类作物学报,2011,31(3):430-436

59.  Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica, 2009, 169: 207–213.

60. 1RS.1BL易位染色体对小麦开花后叶片延绿特性的影响. 麦类作物学报,2009,29(3):419-423

        61. Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.). Plant Soil, 2008, 305:253–265