1. Y. Cai, F. Gao, H. Chen, X. Yang, Z. Bai, Y. Qi, Y. Wang, Z. Lu, and J. Ding, "Continuous-wave diamond laser with a tunable wavelength in orange–red wavelength band," Optics Communications 528(2023).
2. X. Cheng, Z. Lin, X. Yang, S. Cui, X. Zeng, H. Jiang, and Y. Feng, "High Power 1560 nm Single-Frequency Erbium Fiber Amplifier Core-pumped at 1480 nm," High Power Laser Science and Engineering, 1-21 (2023).
3. J. Feng, X. Cheng, H. Jiang, and Y. Feng, "45 W single frequency Er:Yb co-doped fiber amplifier at 1530 nm," Optical Fiber Technology 77, 103282 (2023).
4. M. Li, X. yang, Y. Sun, H. Jiang, R. P. Mildren, O. Kitzler, D. J. Spence, and Y. feng, "Secondary Raman and Brillouin mode suppression in two- and three-mirror-cavity diamond Raman lasers," Opt. Express 31, 8622-8631 (2023).
5. X. Li, J. Zhou, Z. Cheng, X. Cao, W. Qi, S. Li, S. Cui, H. Jiang, and Y. Feng, "Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser," Opt. Lett. 48, 3051-3054 (2023).
6. Z. Lin, S. Cui, H. Jiang, X. Zeng, X. Yang, D. Chen, Y. Feng, and W. Chen, "Efficient single-frequency 972 nm Yb-doped fiber amplifier with core pumping and elevated temperature," Opt. Express 31, 10019-10026 (2023).
7. W. Qi, J. Zhou, X. Cao, Z. Cheng, S. Li, H. Jiang, S. Cui, and Y. Feng, "Generation of 1.3 um femtosecond pulses by cascaded nonlinear optical gain modulation in phosphosilicate fiber," Opt. Lett. 48, 1698-1701 (2023).
8. B. Ruan, X. Zeng, and Y. Feng, "Modeling of a second harmonic spectrum in passive phase demodulation," Appl. Opt. 62, 2809-2814 (2023).
9. X. Zeng, S. Cui, H. Jiang, B. Ruan, X. Cheng, J. Zhou, Z. Lin, X. Yang, W. Chen, and Y. Feng, "Single frequency upconverted laser generation by phase summation," High Power Laser Science and Engineering, 1-6 (2023).
10. C. Zhu, X. Yang, Y. Liu, M. Li, Y. Sun, W. You, P. Dong, D. Chen, Y. Feng, and W. Chen, "A Linearly Polarized Wavelength-Tunable Q-Switched Fiber Laser with a Narrow Spectral Bandwidth of 112 MHz," in Sensors, (2023).
11. X. Cao, J. Zhou, Z. Cheng, S. Li, and Y. Feng, "GHz Figure‐9 Er‐Doped Optical Frequency Comb Based on Nested Fiber Ring Resonators," Laser & Photonics Reviews 17(2023).
12. Y. Xiong, J. Zhou, X. Cao, S. Cui, H. Jiang, and Y. Feng, "Highly Discriminative Amplification of a Single Frequency Comb Line," Laser & Photonics Reviews (2023).
13. Y. Liu, C. Zhu, Y. Sun, R. P. Mildren, Z. Bai, B. Zhang, W. Chen, D. Chen, M. Li, X. Yang, and Y. Feng, "High-power free-running single-longitudinal-mode diamond Raman laser enabled by suppressing parasitic stimulated Brillouin scattering," High Power Laser Science and Engineering 11(2023).
14. J. Li, C. Sun, H. Ma, B. Tang, M. Qi, J. Jian, Z. Ju, H. Lin, and L. Li, "Ultra-compact scalable spectrometer with low power consumption," Opt. Express 31(2023).
15. 尤崴, 杨学宗, 孙玉祥, 李牧野, 姜华卫, 陈迪俊, 陈卫标, 冯衍. 高功率连续波单频589 nm金刚石钠导星激光器研究(特邀)[J].光子学报, 2023, 52(05):20-29.
16. M. Wei, K. Xu, B. Tang, J. Li, Y. Yun, P. Zhang, Y. Wu, K. Bao, K. Lei, Z. Chen, H. Ma, C. Sun, R. Liu, M. Li, L. Li, and H. Lin, "Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics," Nature Communications 15, 2786 (2024).
17. L. Han, X. Zeng, X. Cheng, X. Yang, and Y. Feng, "20 Watt single-frequency 509 nm laser by single-pass second harmonic generation in an LBO crystal," Opt. Express 32, 14713-14718 (2024).
18. Y. Xiong, J. Zhou, X. Cao, S. Cui, H. Jiang, and Y. Feng, "Highly Discriminative Amplification of a Single Frequency Comb Line," 18, 2300769 (2024).
19. X. Cao, J. Zhou, Z. Cheng, S. Li, and Y. Feng, "GHz Figure-9 Er-Doped Optical Frequency Comb Based on Nested Fiber Ring Resonators," 17, 2300537 (2023).
20. J. Li, L. Wang, X. Xu, K. Lei, B. Tang, H. Dai, J. Zhang, J. Jian, Y. Ye, H. Ma, J. Wu, Y. Luo, Z. Chen, Y. Yin, C. Sun, D. Zhang, L. Li, and H. Lin. Local laser annealing for amorphous-polycrystalline silicon hybrid photonics on CMOS. Optics & Laser Technology 181, 117799 (2025).
(特邀)
21. J. Li, Y. Yun, K. Xu, J. Zhang, H. Lin, Y. Zhang, J. Hu, T Gu. Performance limits of phase change integrated photonics. IEEE Journal of Selected Topics in Quantum Electronics 30(4), 6100109 (2024).
22. M. Wei, K. Xu, B. Tang, J. Li, Y. Yun, P. Zhang, Y. Wu, K. Bao, K. Lei, Z. Chen, H. Ma, C. Sun, R. Liu, M. Li, L. Li, and H. Lin. Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics. Nature Communications 15(1), 2786 (2024).
23. J. Li, C. Sun, H. Ma, B. Tang, M. Qi, J. Jian, Z. Ju, H. Lin, and L. Li. Ultra-compact scalable spectrometer with low power consumption. Optics Express, 31(24): 39606-39615 (2023).
2023年之前组内论文
1. (X. Zeng, S. Cui, X. Cheng, J. Zhou, W. Qi, and Y. Feng). Resonant frequency doubling of phase-modulation-generated few-frequency fiber laser. Opt. Lett. 2020. 45(17), 4944-4947.
2. (X. Zeng, S. Cui, J. Qian, X. Cheng, J. Dong, J. Zhou, Z. Xu, and Y. Feng). 10 W low-noise green laser generation by the single-pass frequency doubling of a single-frequency fiber amplifier. Laser Phy. 2020. 30, 075001.
3. (J. Zhou, W. Pan, and Y. Feng). Period multiplication in mode-locked figure-of-9 fiber lasers. Opt. Express. 2020. 28 (12), 17424-17433.
4. (J. Zhou, W. Qi, W. Pan, and Y. Feng). Dissipative soliton generation from a large anomalous dispersion ytterbium-doped fiber laser. Opt. Lett. 2020. 45(20), 5768-5771.
5. (G.-W. Sun, D.-J. Chen, G.-F. Xin, H.-W. Cai, and W.-B. Chen). High stability laser source for Taiji-1 satellite. International Journal of Modern Physics A. 2021. 36(11n12), 2140006.
6. (S. Cui, J. Qian, X. Zeng, X. Cheng, X. Gu, and Y. Feng). A watt-level yellow random laser via single-pass frequency doubling of a random Raman fiber laser. Optical Fiber Technology. 2021. 64, 102552.
7. (X. Cheng, S. Cui, X. Zeng, J. Zhou, and Y. Feng). Spectral and RIN properties of a single-frequency Raman fiber amplifier co-pumped by ASE source. Opt. Express. 2021. 29(10), 15764-15771.
8. (Z. Lin, C. Yu, and L. Hu). Laser properties of Nd3+/Yb3+ co-doped glass fiber around 1 µm. J. Opt. Soc. Am. B. 2021. 38(8), 2443-2450.
9. (Z. Bai, Z. Zhang, K. Wang, J. Gao, Z. Zhang, X. Yang, Y. Wang, Z. Lu, and R. P. Mildren). Comprehensive Thermal Analysis of Diamond in a High-Power Raman Cavity Based on FVM-FEM Coupled Method. Nanomaterials. 2021. 11(6), 1572.
10. (X. Yang, Z. Bai, D. Chen, W. Chen, Y. Feng, and R. P. Mildren). Widely-tunable single-frequency diamond Raman laser. Opt. Express. 2021. 29(18), 29449-29457.
11. (X. Yang, Z. Bai, H. Jiang, R. P. Mildren, and Y. Feng). A Narrow-Linewidth Linearly Polarized 1018-nm Fiber Source for Pumping Diamond Raman Laser. Frontiers in Physics 2021. 9(418).
12. 尤崴, 杨学宗, 陈卫标, 冯衍. 589 nm激光钠导星技术研究综述(特邀). 光电技术应用. 2021. 36(5).
13. (崔淑珍, 曾鑫, 程鑫, 杨学宗, 冯衍). 基于级联拉曼激光倍频的10 W黄光光纤激光器. 中国激光. 2021. 48 (16), 1601006.
14. (H. Chen, Z. Bai, C. Zhao, X. Yang, J. Ding, Y. Qi, Y. Wang, and Z. Lu), Numerical Simulation of Long-Wave Infrared Generation Using an External Cavity Diamond Raman Laser, Frontiers in Physics 9(2021).
15. (S. Cui, X. Zeng, H. Jiang, X. Cheng, X. Yang, J. Zhou, and Y. Feng). Robust single-frequency 589 nm fiber laser based on phase modulation and passive demodulation. Opt. Express. 2022. 30(6), 9112-9118.
16. (X. Cheng, J. Dong, X. Zeng, J. Zhou, S. Cui, W. Qi, Z. Lin, H. Jiang, and Y. Feng).130 W continuous-wave supercontinuum generation within a random Raman fiber laser. Optical Fiber Technology. 2022. 68, 102825.
17. (J. Zhou, W. Pan, W. Qi, X. Cao, Z. Cheng, and Y. Feng), Ultrafast Raman fiber laser: a review and prospect, PhotoniX 3, 18 (2022).
18. (李牧野, 杨学宗, 孙玉祥, 白振旭, 冯衍). 单频连续波金刚石拉曼激光器研究进展(特邀)[J]. 红外与激光工程, 2022, 51(6): 20210970.
19. (Z. Lin, Y. Feng, D. Chen, and W. Chen), "Laser Performance of Nd-Doped Fiber Laser at 1120 nm," IEEE Photonics Journal 14, 1-4 (2022).
20. (Y. Liu, W. You, C. Zhu, M. Li, Y. Sun, X. Yin, D. Chen, Y. Feng), W. Chen, and X. Yang, "A review of ns-pulsed Raman lasers based on diamond crystal," Frontiers in Physics 10(2022).
21. (Y. Sun, M. Li, R. P. Mildren, Z. Bai, H. Zhang, J. Lu, Y. Feng, and X. Yang), "High-power continuous-wave single-frequency diamond Raman laser at 1178 nm," Applied Physics Letters 121(2022).
22. (Y. Sun, M. Li, O. Kitzler, R. P. Mildren, Z. Bai, H. Zhang, J. Lu, Y. Feng, and X. Yang), "Stable high-efficiency continuous-wave diamond Raman laser at 1178 nm," Laser Phy. Lett. 19(2022).
23. (Sha Li,xin zeng,Jiaqi Zhou,Zhi Cheng,Yan Feng), “Polarization and longitudinal modes of Möbius fiber ring lasers”,optica(Accepted)(2022).
24. (W. Qi, J. Zhou, S. Cui, X. Cheng, X. Zeng, and Y. Feng). Femtosecond Pulse Generation by Nonlinear Optical Gain Modulation. Advanced Photonics Research. 2022. 3(3), 2100255.
25. (X. Zeng, S. Cui, X. Cheng, and Y. Feng). Spectral compression by phase doubling in second harmonic generation. Opt. Lett. 2022. 47(2), 222-225.
26. (Y. Cai, F. Gao, H. Chen, X. Yang, Z. Bai, Y. Qi, Y. Wang, Z. Lu, and J. Ding), "Continuous-wave diamond laser with a tunable wavelength in orange–red wavelength band," Optics Communications 528(2023).
27. (Y. Chen, J. Liu, X. Zhu, M. Wang, X. Yang, Y. Feng, X. Chen, and W. Chen), "Intracavity frequency-doubled pulsed diamond Raman laser emitting at 620 nm," Applied Physics B 128(2022).
28. Zhang Y†, Chou J B†, Li J†, Li H†, Du Q, Yadav A, Zhou S, Shalaginov M Y, Fang Z, Zhong H, Roberts C, Robinson P, Bohlin B, Ríos C, Lin H, Kang M, Gu T, Warner J, Liberman V, Richardson K, and Hu J. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nature Communications, 2019, 10(1): 4279. († Authors contributed equally)
29. Du J, Mu Z, Li L, and Li J*. A Raman study on nanosecond-laser-induced multi-level switching of Ge2Sb2Te5 thin films. Optics and Laser Technology, 2021, 144: 107393. (* Corresponding author).