3488
当前位置: 首页   >  成果及论文
成果及论文
完整列表详见  ‪Song Qiu (邱松)‬ - ‪Google Scholar‬
  1. Length-controlled Sorting and Length-dependent properties of short Semiconducting Single-walled Carbon Nanotubes, Carbon, 2023,  CARBON-D-23-02335

  2. Molecular Doping Modulation and Applications of Structure-sorted Single-Walled Carbon Nanotubes: A Review, Ye Liu et al., Small, 2023

  3. CuI Encapsulated within Single-Walled Carbon Nanotube Networks with High Current Carrying Capacity and Excellent Conductivity, Zhang, Rong, et al., Advanced Functional Materials, 2023, n/a, 2301864.  doi.org/10.1002/adfm.202301864

  4. A Hybrid Computing-In-Memory Architecture by Monolithic 3D Integration of BEOL CNT/IGZO-based CFET Logic and Analog RRAM, Ran An et al., 2022 IEEE International Electron Devices Meeting (IEDM), 2022; p 18.1.1-18.1.4.  doi.org/10.1109/IEDM45625.2022.10019473.

  5. Large-Scale Integrated Flexible Tactile Sensor Array for Sensitive Smart Robotic Touch, Zhenxuan Zhao et al., ACS Nano, 2022.  doi.org/10.1021/acsnano.2c06432

  6. Length-dependent alignment of large-area semiconducting carbon nanotubes self-assembly on a liquid–liquid interface, Haijian Wen et al., Nano Research, 2022, 16, 1568-1575.  Doi.org/10.1007/s12274-022-4782-8

  7. Laminated three-dimensional carbon nanotube integrated circuits, Yang Jian#, Yun Sun#, Shun Feng, Chao Zang, Bo Li, Song Qiu*, Qing-Wen Li, Xin Yan*, Dong-Ming Sun*, Nanoscale, 2022, 14, 7049-7054.  doi.org/10.1039/D2NR01498J

  8. Patterning of Wafer-scale MXene Films for High-performance Image Sensor Arrays, Bo Li et al., Adv. Mater. 2022, 34(17), 2201298.  doi.org/10.1002/adma.202201298

  9. Hysteresis Suppression of Carbon Nanotube Thin-Film Transistor Using Laminated HfO₂/Al₂O₃ by ALD, Haozhi Ni et al., IEEE Transactions on Electron Devices (IEEE-TED), 2022, 69, 3, 1069-1076.  doi.org/10.1109/TED.2022.3141036

  10. Soft-lock drawing of super-aligned carbon nanotube bundles for nanometer electrical contacts, Yunfan Guo et al., Nature Nanotechnology, 2022, 17, 278-284.  doi.org/10.1038/s41565-021-01034-8.

  11. Monolithic 3D integration of Logic, Memory and Computing-In-Memory for One-Shot Learning, Yijun Li et al., IEEE International Electron Devices Meeting (IEDM), 2021

  12. High-purity Monochiral Carbon Nanotubes with 1.2 nm-diameter for High-performance Field-effect Transistors, Yahui Li et al., Advanced Functional Materials, 2021, 32(1), 2107119  DOI:10.1002/adfm.202107119

  13. Rapid annealing and cooling induced surface cleaning of semiconducting carbon nanotubes for high-performance thin-film transistors, Jian Yao et al., Carbon, 2021, 184, 764-771  doi.org/10.1016/j.carbon.2021.08.076

  14. A Flexible Ultrasensitive Optoelectronic Sensor Array for Neuromorphic Vision Systems Qian-Bing Zhu et al., Nature Communications, 2021, 12(1), 1798.  doi.org/10.1038/s41467-021-22047-w

  15. A FinFET with one atomic layer channel, Mao-Lin Chen et al., Nature Communications. 2020, 11, 1205

  16. A Flexible Carbon Nanotube Sen‐Memory Device, Ting-Yu Qu et al., Adv. Mater. 2020, 32, 9, 1907288

  17. Assembly of Aligned Semiconducting carbon nanotubes via Introducing Inter-Tube Electrostatic Repulsion, Bing Gao et al., Carbon, 2019, 146, 172-180

  18. Controllable etching-induced contact enhancement for high-performance carbon nanotube thin-film transistors, Zhengxia Lv et al., RSC Advance, 2019 ,9, 10578-10583

  19. Flexible 64×64 Pixel AMOLED Displays Driven by Uniform Carbon Nanotube Thin-film Transistors, Zhao Tian-Yang et al., ACS Applied Materials & Interfaces, 2019, 11, 12,11699

  20. Solution-processing of High-Purity Semiconducting Single-Walled Carbon Nanotubes for Electronics Devices, Song Qiu et al., Adv. Mater., 2018, 31, 9, 1800750 https://doi.org/10.1002/adma.201800750

  21. Continuous fabrication of meter-scale single-wall carbon nanotube films and their use in flexible and transparent integrated circuits, Bing-Wei Wang et al., Adv. Mater., 2018, 30(32), 1802057 https://doi.org/10.1002/adma.201802057

  22. High-throughput fabrication of flexible and transparent all-carbon nanotube electronics based on a photosensitive dry film, Yong-Yang Chen et al., Advanced Science, 2018, 5(5), 1700965. https://doi.org/10.1002/advs.569

  23. Thiophene-containing polymer on sorting semiconducting single-walled carbon nanotubes, Yuan He et al., Polymer, 2018, 159, 59-63

  24. Recycling Strategy for Fabricating Low-Cost and High Performance Carbon Nanotube TFT Devices, Xiaoqin Yu et al., ACS Appl. Mater. Interfaces, 2017, 9, 15719−15726

  25. Low Hysteresis Carbon Nanotube Transistors Constructed via a General Dry-Laminating Encapsulation Method on Diverse Surfaces, Yi Yang et al., ACS Appl. Mater. Interfaces, 2017, 9, 14292–14300

  26. High-efficiency dispersion and sorting of single-walled carbon nanotubes via non-covalent interactions, Liyuan Liang, et al., J. Mater. Chem. C, 2017, 5, 11339

  27. A novel strategy for high-performance transparent conductive films based on double-walled carbon nanotubes, Yuan He et al., Chemical Communications, 2017, 53, 2934--2937

  28. A Mixed-Extractor Strategy for Efficient Sorting of Semiconducting Single-Walled Carbon Nanotubes, Dan Liu et al., Advanced Materials, 2017, 29(8), 1603565 doi.org/10.1002/adma.201603565

  29. A photodegradable hexaaza-pentacene molecule for selective dispersion of large-diameter semiconducting carbon nanotubes, Jie Han et al., Chemical Communications, 2016, 52(49), 7683-7686

  30. Photodegrading hexaazapentacene dispersant for surface-clean semiconducting single-walled carbon nanotubes, Qiyan Ji et al., Carbon, 2016, 105, 448--453

  31. Contact-dominated transport in carbon nanotube thin films: toward large-scale fabrication of high performance photovoltaic devices, Yang Liu et al., Nanoscale, 2016, 8(39), 17122--17130

  32. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits, Bingyan Chen et al., Nano Letter, 2016, 16 (8), 5120-5128

  33. Solution-processable High-purity Semiconducting SWCNTs for Large-area Fabrication of High-performance Thin-film Transistors, Jiantin Gu et al., Small, 2016, 12(36), 4993-4999

  34. Room Temperature Broadband Infrared Carbon Nanotube Photodetector with High Detectivity and Stability, Yang Liu et al., Advanced Optical Materials, 2016, 4(2), 238–245