2024年
43、Feifan Wang, Liang Hu, Yu Jing.* Correlation between the spin effect and catalytic activity of two-dimensional metal organic frameworks for the oxygen evolution reaction. J. Mater. Chem. A, 2024,12, 28764-28770
原文链接:https://doi.org/10.1039/D4TA05700G
42、Tianyang Liu, Tianze Xu, Tianchun Li, Yu Jing.* Selective CO2 Reduction over γ-Graphyne Supported Single-Atom Catalysts: Crucial Role of Strain Regulation. J. Am. Chem. Soc. 2024, Accepted
原文链接:https://doi.org/10.1021/jacs.4c08677
39、Liu, T.; Jing, Y.*; Li, Y.* First-Principles Insights into the Selectivity of CO2 Electroreduction over Heterogeneous Single-Atom Catalysts. J. Phys. Chem. Lett. 2024, 15, XXX, 6216–6221
原文链接:https://doi.org/10.1021/acs.jpclett.4c01096
38、Ma, J.; Liu, T.; Hao, S.; Yan, S.; Xu, Z.; Yang, S.; Shen, H.; Jing, Y.*; Peng, C.* Sulfite-Assisted Acetate Conversion from CO Electroreduction. ChemSusChem 2024, e202400683
原文链接: https://doi.org/10.1002/cssc.202400683
37、Fan, G.; Zhou, Z.*; Jing, Y.*; Frauenheim, T. Suppression of Charge Carrier Recombination in Ta3N5 Photoanode via Defect Regulation: A Theoretical Investigation. J. Mater. Chem. A, 2024, Accepted
原文链接:https://doi.org/10.1039/D4TA01693A
36、Xu, T.; Liu, T.*; Jing, Y.* Bifunctional Oxygen Reduction/Evolution Reaction Electrocatalysts Achieved by Axial Ligands Modulation on Two-Dimensional Porphyrin Frameworks. Phys. Chem. Chem. Phys., 2024,Accepted
原文链接:https://doi.org/10.1039/D4CP01235F
35、Li, T.; Liu, T.; Hu,L.; Jing, Y.* Selective Hydrodeoxygenation of Phenol Driven by Synergistic Effects of Dual-Metal Atoms Over C2N Monolayer. ACS Catal. 2024, 14, XXX, 7220–7231
原文链接:https://doi.org/10.1021/acscatal.4c00474
34、Jiang, L.; Wang, J.; Yang, Y.; Zhu, Z.; Cao, X.; Zhou, Y.; Tang, Y.; Wu, P.*; Jing, Y.*; Li, R.*; Fan,X. Dynamically Forming Interconnected Interfaces in ConfinedHeterostructures Enable High Capacity ConversionChemistry. Adv.Energy Mater. 2024, 2400498
原文链接:https://doi.org/10.1002/aenm.202400498
33、Hu, L.; Li, T.; Jing, Y.* Thermal Pyrolysis Behavior and Decomposition Mechanism of Lignin Revealed by Stochastic Cluster Dynamics Simulations. J. Phys. Chem. C. 2024,128,3832−3838
原文链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.3c07218
2023年
32、Hu,L.; Wang, F.; Jing, Y.* High Catalytic Activity of Co-centered 2D Metal Organic Frameworks toward Bifunctional Oxygen Evolution and Reduction Reactions: Rationalized by Spin Polarization Effect. J. Phys. Chem. Lett. 2023, 14, 11429−11437
原文链接:https://doi.org/10.1021/acs.jpclett.3c02752
31、Shu,X.; Hu,L.; Heine, T.*; Jing, Y.* Rational Molecular Design of Redox-Active Carbonyl-Bridged Heterotriangulenes for High-Performance Lithium-Ion Batteries. Adv. Sci. 2023, 2306680.
原文链接:https://doi.org/10.1002/advs.202306680
30、Xu, T.; Yang, Y.; Liu, T.*; Jing, Y.* Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries. RSC Adv., 2023, 13, 34724.
原文链接:https://doi.org/10.1039/d3ra07655e
29、Li, M.; Li, T.; Jing, Y.* Nb2S2C Monolayers with Transition Metal Atoms Embedded at the S Vacancy Are Promising Single-Atom Catalysts for CO Oxidation. ACS Omega. 2023, 8, 31051−31059.
原文链接:https://doi.org/10.1021/acsomega.3c02984
28、Zhu, X.; Yang, Y.; Shu, X.; Jing, Y.* Computational insights into the rational design of organic electrode materials for metal ion batteries. WIREs Comput. Mol. Sci. 2023: e1660.
原文链接:https://doi.org/10.1002/wcms.1660
27、Roy, P.*; Antonatos, N.; Li, T.; Jing, Y.*; Luxa, J.; Azadmanjiri, J.; Marvan, P.;Heine, T.; Sofer. Z.* 2D Few-Layered PdPS: Toward High-Efficient Self-Powered Broadband Photodetector and Sensors. ACS Appl. Mater. Interfaces 2023, 15, 1, 1859–1870.
原文链接:https://doi.org/10.1021/acsami.2c18125
2022年
26、Zhao, E.; Li, M.; Xu, B.; Wang, X.; Jing, Y.*; Ma, D.; Mitchell, S.; Pérez-Ramírez, J.*; Chen. Z.* Transfer hydrogenation with a carbon-nitride-supported palladium single-atom photocatalyst and water as a proton source. Angew. Chem. Int. Ed. 2022, in press (doi:10.1002/anie.202207410).( IF 16.823 )
原文链接:https://doi.org/10.1002/anie.202207410
25、Jing, Y.*; Zhu, X.; Maier, S.; Heine, T. 2D Conjugated Polymers: Exploiting Topological Properties for the Rational Design of Metal-Free Photocatalysts. Trends Chem. 2022, 4, 792-806.
原文链接:https://doi.org/10.1016/j.trechm.2022.06.002
24、Yang, Y.; Geng, W.; Xu, T.; Jing, Y.* Two-dimensional polymers made of carbonyl-bridged heterotriangulenes are promising anode materials for Li-ion batteries. 2D Mater. 2022, 9, 034003.
原文链接:https://doi.org/10.1088/2053-1583/ac75f3
23、Zhu, X.; Jing, Y.* Natural quinone molecules as effective cathode materials for nonaqueous lithium-ion batteries. J. Power Sources 2022, 531, 231291.
原文链接:https://doi.org/10.1016/j.jpowsour.2022.231291
2021年
22、Li, T.; Li, M.; Zhu, X.; Zhang, J.; Jing, Y.* Conductive two-dimensional M3(C6S3O3)2 monolayers as effective electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 24887-24894.
原文链接:https://doi.org/10.1039/D1TA07442C
21、Zhou, Z.; Springer, M. A.; Geng, W.; Zhu, X.; Li, T.; Li, M.; Jing, Y.*; Heine, T. * Rational Design of Two-Dimensional Binary Polymers from Heterotriangulenes for Photocatalytic Water Splitting. J. Phys. Chem. Lett. 2021, 12, 8134−8140.
原文链接:https://doi.org/10.1021/acs.jpclett.1c02109
20、Zhang, J.; Zhou, Z.; Zhu X.; Geng, W.; Li, T.; Li, M.; Fang, C.; Shan, X.; Li, Y.; Jing, Y.* Mo3(C6X6)2 (X = NH,S,O) monolayers: Two-dimensional conductive metal-organic frameworks as effective electrocatalysts for the nitrogen reduction reaction, J. Energy Chem. 2021, 61, 71-76. (IF=7.21)原文链接: https://doi.org/10.1016/j.jechem.2021.02.029
19、Jing, Y.;* Zhou, Z.; Geng, W.; Zhu, X.; Heine, T.* 2D Honeycomb-Kagome Polymers as Effective Metal-Free Photocatalysts for Water Splitting. Adv. Mater. 2021, 33, 2008645.
原文链接:https://doi.org/10.1002/adma.202008645
2020年
18、Jing, Y.; Heine, T.* Making 2D topological polymers a reality. Nature Mater. 2020, 19, 823-824. (IF=38.89)
原文链接:https://doi.org/10.1038/s41563-020-0690-z
17、Zhang, J.; Zhou, Z.; Wang, F. Li, Y.;* Jing, Y.;* Two-Dimensional Metal Hexahydroxybenzene Frameworks as Promising Electrocatalysts for Oxygen Reduction Reaction. ACS Sustainable Chem. Eng. 2020, 8, 19, 7472-7479. (IF=6.97)
原文链接:https://doi.org/10.1021/acssuschemeng.0c01908
2019年
16、Jing, Y.;* Zhou, Z.; Zhang, J.; Huang, C.; Li, Y.; Wang, F. SnP2S6 Monolayer: a Promising 2D Semiconductor for Photocatalytic Water Splitting. Phys. Chem. Chem. Phys. 2019, 21, 21064-21069. (IF=3.567)
15、Jing, Y.;* Liu, J.; Zhou, Z.; Zhang, J.; Li, Y.* Metallic Nb2S2C Monolayer: A Promising Two-Dimensional Anode Material for Metal Ion Batteries. J. Phys. Chem. C 2019, 123, 44, 26803-26811. (IF=4.309)
14、 Liu, J.; Qiao, M.; Zhou, Z.; Jing, Y.;* Li, Y.* Ti2PTe2 monolayer: a promising two-dimensional anode material for sodium-ion batteries. RSC Adv. 2019, 9, 15536-15541.
13、Jing, Y.; Heine, T.* Two-Dimensional Kagome Lattices Made of Hetero Triangulenes Are Dirac Semimetals or Single-Band Semiconductors. J. Am. Chem. Soc. 2019, 141, 743-747.
2019年以前
12、Jing, Y.;* Heine, T.* Two-Dimensional Pd3P2S8 Semiconductors as Photocatalysts for the Solar-Driven Oxygen Evolution Reaction: a Theoretical Investigation. J. Mater. Chem. A 2018, 6, 23495-23501.
11、Jing, Y.; Ma, Y.; Li, Y.; Heine, T.* GeP3: A small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement. Nano Lett. 2017, 17, 1833-1838.(ESI Hot Paper) (Highly cited paper)
10、Zhu Y. P.;† Jing, Y.;† Vasileff, A.; Heine, T.; Qiao, S. Z.* 3D Synergistically Active Carbon Nanofibers for Improved Oxygen Evolution. Adv. Energy Mater. 2017, 1602928. (co-first author ESI Hot Paper)
9、Jing, Y.; Ma, Y.; Wang, Y.; Li, Y.; Heine, T.* Ultrathin layers of PdPX (X= S, Se): Two Dimensional Semiconductors for Photocatalytic Water Splitting. Chem. Eur. J. 2017, 23, 13612-13616.
8、Jing, Y.; Zhang, X.; Zhou, Z.* Phosphorene: What Can We Know from Computations? WIREs Comput. Mol. Sci. 2016, 6, 5-19. (Inside Cover)
7、Jing, Y.; Zhang, X.; Wu, D.; Zhao, X.; Zhou, Z.* High Carrier Mobility and Pronounced Light Absorption in Methyl-Terminated Germanene: Insights from First-Principles Computations. J. Phys. Chem. Lett. 2015, 6, 4252−4258.
6、Jing, Y.; Zhou, Z.* Computational Insights into Oxygen Reduction Reaction and Initial Li2O2 Nucleation on Pristine and Nitrogen Doped Graphene in Li-O2 Batteries. ACS Catal. 2015, 5, 4309–4317.
5、Jing, Y.; Tang, Q.; He, P.; Zhou, Z.;* Shen, P. Small Molecules Make Big Differences: Molecular Doping Effects on Electronic and Optical Properties of Phosphorene. Nanotechnology 2015, 26, 095201.
4、Jing, Y.; Ortiz-Quiles, E.O.; Cabrera, C.R.;* Chen, Z.;* Zhou, Z.* Layer-by-Layer Hybrids of MoS2 and Reduced Graphene Oxide for Lithium Ion Batteries. Electrochim. Acta 2014, 147, 392–400.
3、Jing, Y.; Zhou, Z.;* Cabrera, C.R.; Chen, Z.* Graphene, Inorganic Graphene Analogs and Their Composites for Lithium Ion atteries. J. Mater. Chem. A 2014, 2, 12104–12122. (Inside Cover)
2、Jing, Y.; Tan, X.; Zhou, Z.*; Shen, P. Tuning Electronic and Optical Properties of MoS2 Monolayer via Molecular Charge Transfer. J. Mater. Chem. A 2014, 2, 16892–16897.
1、Jing, Y.; Zhou, Z.*; Cabrera, C.R.; Chen, Z.* Metallic VS2 Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries. J. Phys. Chem. C, 2013, 117, 25409−25413