2049
当前位置: 首页   >  成果及论文
成果及论文

2014-2019

1. Song Y, Liu T, Li M, et al. Engineering of mesoscale pores in balancing mass loading and rate capability of hematite films for electrochemical capacitors[J]. Advanced Energy Materials, 2018, 8(26): 1801784.

2. Song Y, Liu T Y, Xu X X, et al. Pushing the cycling stability limit of polypyrrole for supercapacitors[J]. Advanced Functional Materials, 2015, 25(29): 4626-4632.

3. Song Y, Liu T, Yao B, et al. Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors[J]. ACS Energy Letters, 2017, 2(8): 1752-1759.

4. Song Y, Deng P, Qin Z, et al. A polyanionic molybdenophosphate anode for a 2.7 V aqueous pseudocapacitor[J]. Nano Energy, 2019, 65: 104010.

5. Song Y, Liu T Y, Yao B, et al. Amorphous mixed‐valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability[J]. Small, 2017, 13(16): 1700067.

6. Song Y, Liu T Y, Xu G L, et al. Tri-layered graphite foil for electrochemical capacitors[J]. Journal of Materials Chemistry A, 2016, 4(20): 7683-7688.

7. Song Y, Cai X, Xu X, et al. Integration of nickel–cobalt double hydroxide nanosheets and polypyrrole films with functionalized partially exfoliated graphite for asymmetric supercapacitors with improved rate capability[J]. Journal of Materials Chemistry A, 2015, 3(28): 14712-14720.

8. Yang D, Song Y, Ye Y J, et al. Boosting the pseudocapacitance of nitrogen-rich carbon nanorod arrays for electrochemical capacitors[J]. Journal of Materials Chemistry A, 2019, 7(19): 12086-12094.

9. Zhang M Y, Song Y, Guo D, et al. Strongly coupled polypyrrole/molybdenum oxide hybrid films via electrochemical layer-by-layer assembly for pseudocapacitors[J]. Journal of Materials Chemistry A, 2019, 7(16): 9815-9821.

10. Song Y, Lu X, Deng P, et al. Morphology engineering of electro-deposited iron oxides for aqueous rechargeable Ni/Fe battery applications[J]. Chemical Engineering Journal, 2018, 354: 672-679.

11. Song Y, Xu J L, Liu X X. Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode[J]. Journal of power sources, 2014, 249: 48-58.

12. Sun Z, Cai X, Song Y, et al. Electrochemical deposition of honeycomb magnetite on partially exfoliated graphite as anode for capacitive applications[J]. Journal of Power Sources, 2017, 359: 57-63.

13. Feng D Y, Sun Z, Huang Z H, et al. Highly loaded manganese oxide with high rate capability for capacitive applications[J]. Journal of Power Sources, 2018, 396: 238-245.

14. Song Y, Feng D Y, Liu T Y, et al. Controlled partial-exfoliation of graphite foil and integration with MnO 2 nanosheets for electrochemical capacitors[J]. Nanoscale, 2015, 7(8): 3581-3587.

15. Song Y, Liu T, Qian F, et al. Three-dimensional carbon architectures for electrochemical capacitors[J]. Journal of colloid and interface science, 2018, 509: 529-545.

16. Sun Z, Cai X, Feng D Y, et al. Hybrid Iron Oxide on Three‐Dimensional Exfoliated Graphite Electrode with Ultrahigh Capacitance for Energy Storage Applications[J]. ChemElectroChem, 2018, 5(11): 1501-1508.

17. Song Y, Duan S, Yang D, et al. 3D exfoliated carbon paper toward highly loaded aqueous energy storage applications[J]. Energy Technology, 2019, 7(11): 1900892.

18. Song Y, Zhang M, Liu T, et al. Cobalt-containing nanoporous nitrogen-doped carbon nanocuboids from zeolite imidazole frameworks for supercapacitors[J]. Nanomaterials, 2019, 9(8): 1110.

19. Song Y, Qin Z, Huang Z, et al. Nitrogen-doped carbon “spider webs” derived from pyrolysis of polyaniline nanofibers in ammonia for capacitive energy storage[J]. Journal of Materials Research, 2018, 33(9): 1109-1119.

 

2020

20. Dong R, Song Y, Yang D, et al. Electrochemical in situ construction of vanadium oxide heterostructures with boosted pseudocapacitive charge storage[J]. Journal of Materials Chemistry A, 2020, 8(3): 1176-1183.

21. Qin Z, Song Y, Shi H Y, et al. Heterojunction induced activation of iron oxide anode for high-power aqueous batteries[J]. Chemical Engineering Journal, 2020, 400: 125874.

22. Lv H, Pan Q, Song Y, et al. A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors[J]. Nano-Micro Letters, 2020, 12: 1-56.

 

2021

23. Zhang M Y, Song Y, Yang D, et al. Redox poly‐counterion doped conducting polymers for pseudocapacitive energy storage[J]. Advanced Functional Materials, 2021, 31(1): 2006203.

24. Song Y, Pan Q, Lv H, et al. Ammonium‐ion storage using electrodeposited manganese oxides[J]. Angewandte Chemie, 2021, 133(11): 5782-5786.

25. Pan Q, Dong R, Lv H, et al. Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries[J]. Chemical Engineering Journal, 2021, 419: 129491.

26. Yang D, Song Y, Zhang M Y, et al. A manganese phosphate cathode for long‐life aqueous energy storage[J]. Advanced Functional Materials, 2021, 31(32): 2100477.

 

2022

27. Lv H, Song Y, Qin Z, et al. Disproportionation enabling reversible MnO2/Mn2+ transformation in a mild aqueous Zn-MnO2 hybrid battery[J]. Chemical Engineering Journal, 2022, 430: 133064.

28. Yan H, Mu X, Song Y, et al. Protonating imine sites of polyaniline for aqueous zinc batteries[J]. Chemical Communications, 2022, 58(11): 1693-1696.

29. Qin Z, Song Y, Yang D, et al. Enabling Reversible MnO₂/Mn²⁺ Transformation by Al³⁺ Addition for Aqueous ZnMnO₂ Hybrid Batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10526–10534.

30. Zhang M Y, Song Y, Mu X, et al. Decavanadate doped polyaniline for aqueous zinc batteries[J]. Small, 2022, 18(16): 2107689.

31. Meng J, Song Y, Qin Z, et al. Cobalt–Nickel Double Hydroxide toward Mild Aqueous Zinc‐Ion Batteries[J]. Advanced Functional Materials, 2022, 32(33): 2204026.

32. Yang D, Song Y, Zhang M Y, et al. Solid–Liquid Interfacial Coordination Chemistry Enables High‐Capacity Ammonium Storage in Amorphous Manganese Phosphate[J]. Angewandte Chemie International Edition, 2022, 61(37): e202207711.

33. Qin Z, Song Y, Liu Y, et al. Accessing the proton storage in neutral buffer electrolytes using an electrodeposited molybdenum phosphate[J]. Energy Storage Materials, 2022, 53: 569-579.

 

2023

34. Mu X, Song Y, Qin Z, et al. Core-shell structural vanadium oxide/polypyrrole anode for aqueous ammonium-ion batteries[J]. Chemical Engineering Journal, 2023, 453: 139575.

35. Qin Z, Song Y, Liu Y, et al. Aqueous calcium-ion storage in amorphous molybdenum oxide[J]. Chemical Engineering Journal, 2023, 451: 138681.

36. Lin Y, Ta L, Meng J, et al. Electrodepositing amorphous molybdenum oxides for aqueous NH4+ storage[J]. Chemical Communications, 2023, 59(11): 1481-1484.

37. Pan Q, Hei P, Song Y, et al. Electrochemically activated nickel-cobalt double hydroxide for aqueous ammonium-zinc hybrid battery[J]. Nano Research, 2023, 16(2): 2495-2501.

38. Wang Z, Song Y, Wang J, et al. Vanadium oxides with amorphous‐crystalline heterointerface network for aqueous zinc‐ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(13): e202216290.

39. Han M, Bi J, Liu N, et al. Multi-component carbon-based composites containing high crystallinity NiBDC as high-performance electrodes for supercapacitors[J]. Chemical Communications, 2023, 59(82): 12310-12313.

 

2024

40. Liu C, Li M, Meng J, et al. Electrochemical storage of ammonium versus metal ions in bimetallic hydroxide for sustainable aqueous batteries[J]. Advanced Functional Materials, 2024, 34(3): 2310437.

41. Meng J, Song Y, Wang J, et al. A salt-concentrated electrolyte for aqueous ammonium-ion hybrid batteries[J]. Chemical Science, 2024, 15(1): 220-229.

42. Hei P, Sai Y, Liu C, et al. Facilitating the Electrochemical Oxidation of ZnS through Iodide Catalysis for Aqueous Zinc‐Sulfur Batteries[J]. Angewandte Chemie International Edition, 2024, 63(9): e202316082.

43. Li M, Liu C, Meng J, et al. Hydroxylated Manganese Oxide Cathode for Stable Aqueous Zinc‐Ion Batteries[J]. Advanced Functional Materials, 2024: 2405659.

44. Hei P, Sai Y, Li W, et al. Diatomic Catalysts for Aqueous Zinc‐Iodine Batteries: Mechanistic Insights and Design Strategies[J]. Angewandte Chemie International Edition, e202410848.

45. Lin Y, Meng J, Hei P, et al. Iodine‐Mediated Defect Engineering of Vanadyl Phosphate Cathodes for High‐Performance Aqueous Zinc‐Ion Batteries[J]. Advanced Functional Materials, 2024: 2415639.

46. Sun F, Wu C, Guan X, et al. Electrochemical Sacrificial Alchemy: Crafting Hollow Hydroxide Hierarchy for Practical Aqueous Energy Storage Solution[J]. Advanced Functional Materials, 2024: 2415255.