1740
当前位置: 首页   >  成果及论文
成果及论文

[35] Wuxin Hou, Shujie Wang, Xugang Ye, Yao Wang*, Li Liu*, “Creating Pores in Chitosan-Derived Humins via in Situ CO2 Formation”, ACS Sustainable Chem. Eng. 2023, 11, 6129-6135.

[34] Haozhe Shan, Lei Li, Wei Bai, Li Liu*, “Evolution process of humins derived from glucose”, ChemistrySelect, 2022, 22, e202201237.

[33] Li Liu*, “Application of ionic liquids in production of levulinic acid: From lignocellulosic biomass to marine biomass”, Abstracts of Papers, 235th ACS National Meeting, New Orleans, LA, United States, April 6-10, 2022, ORGN-337.

[32] Li Liu*, “Production of chemicals from marine biomass catalysed by acidic ionic liquids”, Green Chem. 2021, 23, 9800-9814. (Invited Review)

[31] Qingyang Zhao, Li Liu*, “One-Step Conversion of Crab Shells to Levulinic Acid Catalyzed by Ionic Liquids: Self-Healing of Chitin Fraction”, ACS Sustainable Chem. Eng. 2021, 9, 1762–1771.

[30] Haiyan Shen, Haozhe Shan, Li Liu*, “Evolution process and controlled synthesis of humins with 5-hydroxymethylfurfural (HMF) as model molecule”, ChemSusChem 2020, 13, 513-519. (Cover Feature)

[29] Li Liu*, Zhe Zhang, Qingyang Zhao, Xuning Chen, Liezheng Deng*, Wenwu Chen, Yuqi Jin, “Detection of singlet oxygen by chemical trap in ionic liquids”, Chem. Phys. Lett. 2020, 739, 136952.

[28] Wuxin Hou, Qingyang Zhao, Li Liu*, “Selective conversion of chitin to levulinic acid catalyzed by ionic liquid: distinctive effect of N-acetyl groups”, Green Chem. 2020, 22, 62-70. (Back Cover)

[27] Wuxin Hou, Li Liu*, Haiyan Shen, “Selective conversion of chitosan to levulinic acid catalysed by acidic ionic liquid: intriguing NH2 effect in comparison with cellulose”, Carbohydr. Polym. 2018, 195, 267-274.

[26] Li Liu*, Zhenrui Li, Wuxin Hou, Haiyan Shen, “Direct conversion of lignocellulose to levulinic acid catalyzed by ionic liquid”, Carbohydr. Polym. 2018, 181, 778-784.

[25] Li Liu*, Zhengyan Zhao, Ce Hao, “3D fluorescent cucurbit[7]uril framework linked by anion fluorophore”, J. Inclusion Phenom. Macrocyclic. Chem. 2017, 88, 247-252. (Cover Paper)

[24] Li Liu*, “Controlled release from cucurbituril”, J. Inclusion Phenom. Macrocyclic. Chem. 2017, 87, 1-12. (Invited Review)

[23] Li Liu*, “Reversible Capture of CO2 by Cucurbit[7]uril Absorbent”, Advances in Engineering Research, 2017, 94, 182-184.

[22] L. Liu*, H. Ren, “Conversion of fructose into levulinic acid by catalysis of ionic liquid”, Advances in Biological Sciences Research, 2016, 3, 100-103. 

[21] Li Liu*, “Capture of carbon dioxide by cucurbit[7]uril complex”, Advances in Biological Sciences Research, 2016, 3, 351-353.

[20] Li Liu*, Yuhang Yao, Xuefang Zhang, Ce Hao*, “A fluorescent 1,5-naphthalenedisulfonate anion-linked cucurbit[6]uril framework”, Eur. J. Org. Chem. 2015, 2015, 6806-6810.

[19] Li Liu*, Meng Wang, “Competitive recognition between 1:2 ternary complex of zwitterion and H3PO4 towards 3D cucurbit[8]uril frameworks”, J. Inclusion Phenom. Macrocyclic. Chem. 2015, 81, 509-516.

[18] Huifang Ren, Buana Girisuta, Yonggui Zhou, Li Liu*, “Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid”, Carbohydr. Polym. 2015, 117, 569-576.

[17] Xiao Jiang, Peipei Li, Xiumei Liu, Xinwen Guo, Li Liu*, “One-pot synthesis- assembly-separation of cucurbit[6]uril via SO3H-functionalized ionic liquids”, J. Inclusion Phenom. Macrocyclic. Chem. 2014, 80, 457-461.

[16] Li Liu*, Ju Wang, Xiulei Xu, Bingchen Wang, “Supramolecular capsules of cucurbit[6]uril and controlled release”, J. Inclusion Phenom. Macrocyclic. Chem. 2014, 80, 437-441.

[15] Huifang Ren, Yonggui Zhou, Li Liu*, “Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids”, Bioresour. Technol. 2013, 129, 616-619.

[14] Xiulei Xu, Yao Wang, Li Liu*, “H/D exchange of β-carbonyl esters inhibited by cucurbit[7]uril”, Supramolecular Catalysis 2012, 1, 12-15.

[13] Meng Wang, Xiang Li, Li Liu*, “Three-component cucurbit[6]uril framework with 1 : 2 host-guest motif and dimeric boric acid”, Chin. J. Chem. 2012, 30, 1022-1026. (Cover Paper)

[12] Li Liu*, Xiao Jiang, Jie Zhang, “Anion-linked cucurbit[6]uril frameworks formed by microwave-assisted synthesis in ionic liquids”, CrystEngComm 2010, 12, 3445-3447.

[11] Jie Zhang, Huifang Ren, Li Liu*, “Trifluoromethanesulfonate anion-linked supramolecular frameworks of cucurbit[5]uril and cucurbit[7]uril”, Chem. Lett. 2010, 39, 1016-1017.

[10] Peipei Li, Li Liu*, “Application of organic macrocyclic supramolecular structures on adsorption and conversion of carbon dioxide”, Prog. Chem. 2010, 22, 1940-1951.

[9] Nan Zhao, Li Liu, Frank Biedermann, Oren A. Scherman, “Binding studies on CB[6] with a series of 1-alkyl-3-methylimidazolium ionic liquids in an aqueous system”, Chem. Asian J. 2010, 5, 530-537.

[8] Li Liu, Nicolas Nouvel, Oren A. Scherman, “Controlled catch and release of small molecules with cucurbit[6]uril via a kinetic trap”, Chem. Commun. 2009, 3243-3245.

[7] Li Liu, Nan Zhao, Oren A. Scherman, “Ionic liquids as novel guests for cucurbit[6]uril in neutral water”, Chem. Commun. 2008, 1070-1072.

[6] Li Liu, Nan Zhao, Oren Scherman, “Ionic liquid: A novel guest for cucurbit[6]uril in neutral water”, Abstracts of Papers, 235th ACS National Meeting, New Orleans, LA, United States, April 6-10, 2008, ORGN-337.

[5] Li Liu, Mark H. Engelhard, Mingdi Yan, “Surface and interface control on photochemically initiated immobilization”, J. Am. Chem. Soc. 2006, 128, 14067-14072.

[4] Li Liu, Mingdi Yan, “A general approach to the covalent immobilization of single polymers”, Angew. Chem. Int. Ed. 2006, 45, 6207-6210. (Hot Paper)

[3] Li Liu, Qian Chen, Yun-Dong Wu, Chaozhong Li, “8-Endo versus 7-exo cyclization of alpha-carbamoyl radicals. A combination of experimental and theoretical studies”, J. Org. Chem. 2005, 70, 1539-1544.

[2] Li Liu, Xing Wang, Chaozhong Li, “Deoligomerization: a new route to lactams from unsaturated amides via radical oligomerization”, Org. Lett. 2003, 5, 361-363.

[1] J. Zuo, J. Huang, L. Ying, F. Li, C. Zhu, L. Liu, Z. Zhang, B. He, “Dynamic behavior and mass transport in polyacrylic acid gel by dynamic light scattering”, Chin. Chem. Lett. 2002, 13, 448-451.