199473
当前位置: 首页   >  成果及论文
成果及论文

2025

2024

[66] Luo L., Chen S.N., Chen N.N., Wang F., Liu X.X.*, Xiao J.F.*. Unlocking solid waste utilization: Fly ash-supported cobalt catalyzed transformation of 5-hydroxymethylfurfural into biofuel 2,5-dimethylfuran, Mol. Catal., 2024, 567, 114467.

[65] Deng Z.Y., Wang S.H., Chen C., Xia X., Xu Q.*, Yin D.L., Liu X.X.*. Enhanced transfer hydrogenation of biomass-derived ethyl levulinate to γ-valerolactone over Zr-based catalysts through a formic acid modification strategy, Mol. Catal., 2024, 564, 114346.

[64] Guo D.W., Wang F., Xu Q., Yin D.L., Liu X.X.*. Oxygen vacancies enrichment in citric acid-assisted synthesis of Zirconia supported Ni catalyst for highly selective hydrogenolysis of 5-hydroxymethylfurfural, ChemSusChem, 2024, 17, e202401017.

[63] Wang F., Zhao K.Y., Xu Q., Yin D.L., Liu X.X.*. Efficient one-pot transformation of furfural to pentanediol over Cu-modified cobalt-based catalysts, Bioresource Technol., 2024, 403, 130858.

[62] Zhao K.Y., Wen B., Tang Q., Wang F., Liu X.X.*, Xu Q., Yin D.L. Recent catalytic innovations in furfural transformation, Green Chem., 2024, 26, 9957-9992.

[61] Yang L., Liu J., Cheng F., Zhou S.L.*, Xu Q., Yin D.L.*, Liu X.X.*. V-doped MoO3 nanorods for highly selective oxidation of 5-hydroxymethylfurfural to bio-monomer 2, 5-furandicarboxylic acid, Renew. Energ., 2024, 226, 120409.

[60] Liu J., Cheng F., Zhou S.L.*, Zhu L.L., Xu Q., Yin D.L.*, Liu X.X.*. Efficient targeted acquisition 2,5-furandicarboxylic acid derived from 5-hydroxymethylfurfural catalyzed over novel copper and vanadium oxide-functionalized catalysts, Mol. Catal., 2024, 560, 114141.

[59] Zeng Z.J., Tang Q., Wen B., Luo L., Liu X.X.*, Xu Q., Zhong W.Z.*. Zn-modified Co/N-C catalysts for adjustable conversion of 5-hydroxymethylfurfural to furan-based chemicals, J. Environ. Chem. Eng., 2024, 12, 112190.

[58] Sun X.A., Wen B., Wang F., Zhang W.Y., Zhao K.Y., Liu X.X.*. Research advances on the catalytic conversion of biomass-derived furfural into pentanediols, Catal. Comm., 2024, 187, 106864.

[57] Zhou S.L.*, Wen S., Xu Q., Liu X.X.*, Yin D.L. Selective catalytic oxidation of 5-hydroxymethylfurfural to produce 2,5-diformylfuran over nitrogen doped porous carbon, Catal. Lett., 2024, 154, 3494-3502.

[56] Zhu X.T., Wang F., Yang L., Chen Z.H., Zhao K.Y., Liu X.X.*, Xu Q., Yin D.L., Yu N.Y.*. Silica-supported non-precious copper catalyst for catalytic hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan, Mol. Catal., 2024, 553, 113794.

[55] Tian Y., Zhao K.Y., Zhou S.L.*, Xu Q., Yin D.L., Liu X.X.*. A novel sulfonated solid acid catalyst for efficient conversion of furfuryl alcohol to n-butyl levulinate fuel bioadditive, Mol. Catal., 2024, 553, 113731.

[54] Zhou S.L.*, Long M., Wu L., Lei M., Bai J.Z., Huang K.Y., Liu X.X.*, Yin D.L. Titanate nanotubes covalently bonded sulfamic acid as a heterogeneous catalyst for highly efficient conversion of levulinic acid into n-butyl levulinate biofuels, Biomass Convers. Bior., 2024, 14, 9385-9397.

[53] Xiang Y.C., Zhang H.M., Zhang J.Y., Xu Q.*, Liu X.X., Yin D.L.* Sustainable synthesis of a novel Zirconium-coordinated biochar catalyst from sawdusts for conversion of ethyl levulinate to γ-valerolactone, Catal. Lett., 2024, 154, 1931-1944.

2023

[52] Wang F., Lai J.H., Liu Z.X., Wen S., Liu X.X.*. Copper-manganese oxide for highly selective oxidation of 5-hydroxymethylfurfural to bio-monomer 2, 5-furandicarboxylic acid, Biomass Convers. Bior., 13(2023)16887-16898.

[51] Zhou S.L.*, Liu J., Wen S., Yang L., Xu Q., Yin D.L.*, Liu X.X.*. Facile synthesis of ammonium trivanadate(V)/nitrogen doped carbon composites with high catalytic activity for the selective oxidation of 5-hydroxymethylfurfural, Catal. Comm., 184(2023)106792.

[50] Zhao W.G., Wang F., Zhao K.Y., Liu X.X.*, Zhu X.T., Yan L., Yin Y., Xu Q.*, Yin D.L. Recent advances in the catalytic production of bio-based diol 2,5-bis(hydroxymethyl)furan, Carbon Res. Convers., 6(2023)116-131.

[49] Lu X.M., He J., Huang L., Qin J.Z., Ma Y.D., Liu X.X.*, Zhao W.G., et al. Synergetic roles of pyridinic nitrogen and carbonyl sites in nitrogen-doped carbon for the metal-free transfer hydrogenation reactions, Appl. Catal. B: Environ., 324(2023)122277.

[48] Zeng Z.J., Yang L., Zhu X.T., Zhao W.G., Liu X.X.*, Huang Z.X., Xu Q., Zhong W.Z.*. Highly selective production of biofuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Co/N–C catalysts, React. Chem. Eng., 8(2023)455-464.

[47] Tian Y., Zhu X.T., Zhou S.L.*, Zhao W.G., Xu Q., Liu X.X.*. Efficient synthesis of alkyl levulinates fuel additives using sulfonic acid functionalized polystyrene coated coal fly ash catalyst, J. Bioresour. Bioprod., 8(2023)198-213.

[46] Huang Z.X., Zeng Z.J., Zhu X.T., Zhao W.G., Lei J., Xu Q., Yang Y.J., Liu X.X.*. Boehmite-supported CuO as catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan, Front. Chem. Sci. Eng., 17(2023)415-424.

2022

[45] Huang Z.X., Sun X.A., Zhao W.G., Zhu X.T., Zeng Z.J., Xu Q., Liu X.X.*. Selective hydroconversion of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan using carbon nanotubes-supported nickel catalysts, Carbon Res. Convers., 5(2022)289-298.

[44] Zhou S.L.*, Wu L., Bai J.Z., Liu X.X.*, Lei M., Long M., Huang K.Y. Titanate nanotubes-based heterogeneous catalyst for efficient production of biomass derived chemicals, Front. Chem., 10(2022) 939289.

[43] Liu Z.X., Huang Z.X., Zhao W.G., Liu X.X.*. Highly efficient Ni-NiO/carbon nanotubes catalysts for the selective transfer hydrogenation of 5-hydroxymethylfurfural to 2, 5-bis(hydroxymethyl)furan, React. Chem. Eng., 7(2022)1873-1878.

[42] Zhao K.Y., Xiang Y.P., Sun X.A., Chen L.J., Xiao J.F.*, Liu X.X.*. Highly efficient one-step conversion of fructose to biofuel 5-ethoxymethylfurfural using a UIO-66-SO3H catalyst, Front. Chem., 10(2022)900482.

[41] Xiang Y.P., Zhao K.Y., Zhou S.L.*, Zhao W.G., Zeng Z.J., Zhu X.T., Liu X.X.*. Sulfonic acid covalently grafted Halloysite nanotubes for highly efficient synthesis of biofuel 5-ethoxymethylfurfural, Sustain. Energ. Fuels, 6(2022)2368-2376.

[40] Zhao W.G., Zhu X.T., Zeng Z.J., Lei J., Huang Z.X., Xu Q., Liu X.X.*, Yang Y.J. Cu-Co nanoparticles supported on nitrogen-doped carbon: an efficient catalyst for hydrogenation of 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan, Mol. Catal., 524(2022)112304.

[39] Zhou S.L.*, Lei M.,  Bai J.Z., Liu X.X.*, Wu L., Long M., Huang K.Y., Yin D.L. Titania nanotubes-bonded sulfamic acid as an efficient heterogeneous catalyst for the synthesis of n-butyl levulinate, Front. Chem., 10(2022)894965.

[38] Zhou S.L., Lai J.H., Liu X.X.*,  Huang G., You G.L., Xu Q., Yin D.L.*.  Selective conversion of biomass-derived furfuryl alcohol into n-butyl levulinate over sulfonic acid functionalized TiO2 nanotubes, Green Energy Environ.,  7(2022)257-265. 

[37] Zhao W.G., Huang Z.X., Yang L., Liu X.X.* , Xie H.Y., Liu Z.X. Highly efficient syntheses of 2,5-bis(hydroxymethyl)furan and 2,5-dimethylfuran via the hydrogenation of biomass-derived 5-hydroxymethylfurfural over a nickel–cobalt bimetallic catalyst, Appl. Surf. Sci., 577(2022)151869.

[36] Zhu J., Cheng F., Wang F., Wen S., Liu X.X.*. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over a vanadium manganese oxide catalyst, Catal. Lett., 152(2022)2280-2287.

[35] Huang Z.X., Wang J.H., Lei J., Zhao W.G., Chen H., Yang Y.J.*, Xu Q., Liu X.X.*. Recent advances in the catalytic hydroconversion of 5-hydroxymethylfurfural to valuable diols, Front. Chem., 10(2022) 925603.

[34] He H.T., Zheng M., Liu Q., Liu J., Zhao J., Zhuang Y.T., Liu X.X., Xu Q.,Kirk S. R.*, Yin D.L.*. Hydroxyl-assisted selective epoxidation of perillyl alcohol with hydrogen peroxide by vanadium-substituted phosphotungstic acid hinged on imidazolyl activated carbon, New J. Chem., 46(2022)6636-6645.

2021

[33] Cheng F., Guo D.W., Lai J.H., Long M.H., Zhao W.G., Liu X.X.*, Yin D.L.  Efficient base-free oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over copper-doped manganese oxide nanorods with tert-butanol as solvent, Front. Chem. Sci. Eng., 15(2021)960-968.

[32] Guo D.W., Lai J.H., Cheng F., Zhao W.G., Chen H., Li H., Liu X.X*, Yin D.L., Yu N.Y. Titanium silicalite-1 supported bimetallic catalysts for selective hydrogenolysis of 5-hydroxymethylfurfural to biofuel 2, 5-dimethylfuran, Chem. Eng. J. Adv., 5(2021)100081.

[31] Xiang Y.P., Wen S., Tian Y., Zhao K.Y., Guo D.W., Cheng F., Xu Q., Liu X.X*, Yin D.L. Efficient synthesis of 5-ethoxymethylfurfural from biomass-derived 5-hydroxymethylfurfural over sulfonated organic polymer catalyst, RSC Adv., 11(2021)3585-3595. 

[30] Lai J.H., Cheng F., Zhou S.L.,  Wen S., Guo D.W., Zhao W.G., Liu X.X.* , Yin D.L. Base-free oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over nitrogen-containing polymers supported Cu-doped MnO2 nanowires, Appl. Surf. Sci., 565(2021)150479.

[29] Liu J.Y., Liu X.X.*, Xu Q., et al.(α-Fe2O3)1-x(V2O5)x  catalysts with enhanced acid-base property for the highly active and ortho-selective methylation of phenol, Mol. Catal., 515(2021)111857. 

[28] Zhao W.G., Ding H., Tian Y., Xu Q., Liu X.X.*. Efficient alcoholysis of furfuryl alcohol to n-butyl levulinate catalyzed by 5-sulfosalicylic acid, J. Chin. Chem. Soc., 68(2021)1339-1345.

[27] Li H., Liu J., Zhao J., He H.T., Jiang D.B., Kirk S.R., Xu Q., Liu X.X., Yin D.L.*. Selectively catalytic isomerization of β-pinene oxide to perillyl alcohol enhanced by protic tetra-imidazolium nitrate, ChemistryOpen, 10(2021)477-485.

[26] Chen H., Xu Q.*, Zhang D., Liu W.Z., Liu X.X., Yin D.L.*. Highly efficient synthesis of γ-valerolactone by catalytic conversion of biomass-derived levulinate esters over support-free mesoporous Ni, Renew. Energ., 163(2021)1023-1032.

[25] Chen H., Xu Q.*, Li H., Liu J., Liu X.X., Huang G., Yin D.L.*. Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over Ni supported on equilibrium fluid-catalytic-cracking catalysts, Catal. Lett., 151(2021)538-547.

2020

[24] Guo D.W., Liu X.X.*, Cheng F., Zhao W.G., Wen S., Xiang Y.P., Xu Q., Yu N.Y., Yin D.L*. Selective hydrogenolysis of 5-hydroxymethylfurfural to produce biofuel 2, 5-dimethylfuran over Ni/ZSM-5 catalysts, Fuel, 274(2020)117853.

[23] Lai J.H., Zhou S.L., Cheng F., Guo D.W., Liu X.X.*, et al. Efficient and selective oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran catalyzed by magnetic vanadium-based catalysts with air as oxidant, Catal. Lett., 150(2020)1301-1308.

[22] Mao F.F., Zhao W.G., Tao D.J.*, Liu X.X.*. Highly efficient conversion of renewable levulinic acid to n-butyl levulinate catalyzed by sulfonated magnetic titanium dioxide nanotubes, Catal. Lett., 150(2020)2709-2715.

[21] Tian Y., Zhang R.Q., Zhao W.G., Wen S., Xiang Y.P., Liu X.X*. A new sulfonic acid-functionalized organic polymer catalyst for the synthesis of biomass-derived alkyl levulinates, Catal. Lett.150(2020)3553-3560.

[20] Zhao W.G., Ding H., Zhu J., Liu X.X.*, et al.  Esterification of levulinic acid into n-butyl levulinates catalyzed by sulfonic acid-functionalized lignin-montmorillonite complex, J. Bioresour. Bioprod., 5(2020)291-299.

[19] Wen S., Liu K., Tian Y., Xiang Y.P., Liu X.X.*, Yin D.L. Phosphorus-doped carbon supported vanadium phosphate oxides for catalytic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran, Processes, 8(2020)1273.

[18] Liu Q., Huang G., He H.T., Xu Q.*, Li H., Liu J., Liu X.X., et al. Biomimetic conversion of α-pinene with H2O2 to sobrerol over V2O5: Dihydroxylation by a peroxo vanadium peracid vectoring gentle synergistic oxidation, Catal. Comm., 142(2020)106041.

[17] Zhang D.,  Wen B.,  Chen Y.P.,  Xu Q.*,  Zhu X.S.,  Sun N.,  Liu X.X., Yin D.L*. Reuse of waste catalytic-cracking catalyst: fine performance in acetalization, J. Mater. Cycles. Waste., 22(2020) 22-29.

2019

[16] Zhou S.L., Liu X.X.*, Lai J.H., Zheng M., Liu W.Z., Xu Q., Yin D.L. Covalently linked organo-sulfonic acid modified titanate nanotube hybrid nanostructures for the catalytic esterification of levulinic acid with n-butyl alcohol, Chem. Eng. J., 361(2019)571-577.

[15] Lai J.H., Liu K., Zhou S.L., Zhang D., Liu X.X.*, et al. Selective oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran over VPO catalysts under atmospheric pressure, RSC Adv., 9(2019)14242-14246. 

[14] Lai J.H., Zhou S.L., Liu X.X.*, et al. Catalytic transfer hydrogenation of biomass-derived ethyl levulinate into gamma-valerolactone over graphene oxide-supported zirconia catalysts, Catal. Lett., 149(2019)2749-2757.

[13] Jiang D.B., Zhou S.L., Fu Z.H.*, Xu Q., Xiao J.F., Liu X.X., et al. Nano-silica@PVC-bonded N-ethyl sulfamic acid as a recyclable solid catalyst for the hydroxyalkylation of phenol with formaldehyde to bisphenol F, Bull. Chem.Soc.Jpn., 92(2019)1394-1403.

[12] Liu W.Z., Xiao J.F.,  Xu Q.*, Liu X.X., et al. Imidazolyl activated carbon refluxed with ethanediamine as reusable heterogeneous catalysts for Michael addition, RSC Adv., 9(2019)185-191. 

2018

[11] McFarland F. M., Liu X.X.(co-first author), Zhang S., et al. Electric field induced assembly of macroscopic fibers of poly(3-hexylthiophene), Polymer, 151(2018)56-64.

[10] Zhou S.L., Jiang D.B., Liu X.X., et al. Titanate nanotubes-bonded organosulfonic acid as solid acid catalyst for synthesis of butyl levulinate, RSC Adv., 8(2018)3657-3662. 

2017

[9] Liu X.X.*, Yang Y.J., Yin D.L., et al. Efficient oxidation of glucose into sodium gluconate catalyzed by hydroxyapatite supported Au catalyst, Catal. Lett., 147(2017)383-390. 

[8] Liu J.Y., Huang H., Liu X.X., et al. Preparation of Fe2O3 doped SBA-15 for vapor phase ortho-position C-alkylation of phenol with methanol, Catal. Comm., 92(2017)90-94.

2016

[7] Liu X.X.*, Ding H., Xu Q., et al. Selective oxidation of biomass derived 5-hydroxymethylfurfural to 2, 5-diformylfuran using sodium nitrite, J. Energy Chem.,25(2016)117-121. 

[6] Liu X.X.*, Xu Q., Liu J.Y., et al. Hydrolysis of cellulose into reducing sugars in ionic liquids, Fuel, 164(2016)46-50.

[5] Liu X.X.*, Xiao J.F., Ding H., et al. Catalytic aerobic oxidation of 5-hydroxymethylfurfural over VO2+ and Cu2+ immobilized on amino functionalized SBA-15, Chem. Eng. J.,283(2016)1315-1321. 

[4] Huang H., Liu J.Y., Liu X.X., et al. Microwave-dried α-Fe2O3 as a highly efficient catalyst for ortho-methylation of phenol with methanol, Fuel, 182(2016)373-381.

2015

[3] Zhong W.Z., Qiao T., Dai J., Mao L.Q.*, Xu Q., Zou G.Q., Liu X.X., et al. Visible-light-responsive sulfated vanadium-doped TS-1 with hollow structure: Enhanced photocatalytic activity in selective oxidation of cyclohexane, J. Catal.,330(2015)208-221.

[2] Yang Y.J., Liu X.X.*, Yin D.L., et al. A recyclable Pd colloidal catalyst for liquid phase hydrogenation of α-pinene, J.Ind.Eng.Chem., 26(2015)333-334.

[1] Liu X.X., Yang Y.J., Yin D.L., et al. Selective hydrogenation of citral to 3,7-dimethyloctanal over activated carbon-supported nano-palladium under atmospheric pressure, Chem. Eng. J., 263(2015)290-298.

学术编著

[1] Liu X.X., Show P. L., Xia H.A., Yue J., eds. (2023). Advanced catalytic materials and technologies in biomass conversion. Lausanne: Frontiers Media SA. https://doi.org/10.3389/978-2-83251-847-2, Online ISBN 978-2-83251-847-2.

授权专利

[8] 杨拥军,雷涤尘,雷婧,胡吉林,叶咏祥,李功华,欧阳文兵,郑子键,刘贤响一种粗铑参杂助溶制备水合三氯化铑的方法中国专利: ZL202111671588.X2023-08-04.

[7] 刘贤响,黄泽星,赵文广,朱晓婷,刘子璇,曾智娟,钟文周. 一种5-羟甲基糠醛转移加氢制备2,5-二羟甲基呋喃的方法. 中国专利:ZL202210244329.7,2023-08-01.

[6] 刘贤响,赵文广,黄泽星,刘子璇,杨柳,钟文周,曾智娟. 一种双金属铜钴氮杂碳材料催化剂及其制备方法与应用. 中国专利:ZL202111432214.2,2023-02-28.

[5] 刘贤响,郭栋稳,赵文广,田益,向艳平,温莎,程峰.一种制备2, 5-二甲基呋喃的方法.中国专利:ZL202010847214.8,2022-11-29.

[4] 刘贤响,赵文广,刘健,郭栋稳,黄泽星,尹笃林.一种5-羟甲基糠醛制备2, 5-呋喃二甲醇的方法.中国专利:ZL202110045689.X,2022-07-01.

[3] 刘贤响,赖金花,周硕林,程峰,郭栋稳,尹笃林.用于氧化合成2, 5-呋喃二甲酸的催化剂及其制备方法和应用.中国专利:ZL201910496623.5,2021-12-10.

[2] 刘贤响,徐琼,赖金花,刘凯,丁慧,尹笃林,周硕林.一种用于合成乙酰丙酸酯的催化剂及其应用.中国专利:ZL201810076446.0,2020-12-18.

[1] 刘贤响,尹笃林,刘凯,赖金花,徐琼.一种制备2, 5-二甲酰基呋喃的方法.中国专利:ZL201710317239.5,2020-01-24.

申请专利

[3] 刘贤响,王峰,赵康宇,周硕林,徐琼,罗兰. 一种由糠醛直接制备1,2-戊二醇的方法.中国专利:202410728472.2,2024-06-06.

[2] 刘贤响,王峰,孙小傲,唐清,赵康宇,周硕林,徐琼,尹笃林. 一种糠醛氢解制备1,5-戊二醇的方法.中国专利:202410460926.2,2024-04-17.

[1] 刘贤响,朱晓婷,王峰,赵康宇,喻宁亚,徐琼. 一种制备2,5-呋喃二甲醇的方法.中国专利:202211316164.6,2022-10-25.

more