9512
当前位置: 首页   >  成果及论文
成果及论文

23. Spirobipyridine Ligand Enabled Iridium-Catalyzed Site-Selective C-H Activation via Non-Covalent Interactions

Dong,K; Wu, T; Wang, M.*; Lin, L.* Angew. Chem., Int. Ed.  2024, e202411158https://doi.org/10.1002/anie.202411158

22. In situ copper photocatalysts triggering halide atom transfer of unactivated alkyl halides for general C(sp3)-N couplings

Luo, H; Yang, Y; Fu, Y; Yu, F; Gao, L; Ma, Y; Yang, L*; Wu, K*; Lin, L*. Nat. Commun. 2024, 15, 5647.

21. Silylacylation of Alkenes through N‑Heterocyclic Carbene Catalysis

Xu, H; Zheng, W.; Liu W.-D.;  Zhou, Y.*; Lin, L.; Zhao, J.*  Org. Lett. 2023, 25, 5579−5584.

20. Visible-Light-Activated Nickel Thiolates for C−S Couplings

Wang, G.; Gao, L.; Feng, Y. Lin, L.* Org. Lett. 2023, 25, DOI: 10.1021/acs.orglett.3c01474

19. Photoinduced Homolysis of the Ni−P Bond via Ligand to Metal Charge Transfer for C−P Bond Formation in Nickel Catalysis

Ma, Y.;  Luo, H.; Lin, L.*  Org. Lett. 2023, 25, 3492-3496.

18. Recent Advance in Single Nickel Photocatalysis for Carbon-Heteroatom Bond Formation

Luo, H.; Feng, Y.; Lin, L.* ChemCatChem 2023, e202300303

17. Sodium-Iodide-Promoted Nickel-Catalyzed C-N Cross-Coupling of Aryl Chlorides and N-nucleophiles under Visible-Light Irradiation

Feng, Y.; Luo, H.; Yu, F.; Liao, Q.; Lin, L.* Green Chem. 2023, 25, 2361-23614.

16. Photo-Induced Nickel-Catalyzed Carbon-Heteroatom Coupling

Luo, H.; Wang, G.; Feng, Y.; Zheng, W.; Kong, L.; Ma, Y.; Matsunaga, S.*; Lin, L.*  Chem. Eur. J. 2023, e202202385. (Highlighted by ChemistryViews) 

                          

    


15. Light-Promoted Arylsilylation of Alkenes with Hydrosilanes

 Zheng, W.;  Xu, Y.; Luo, H.; Feng, Y.;  Zhang, J.;  Lin, L.* Org. Lett. 2022,  24, 7145–7150.


  


14. Light-Promoted Nickel-Catalyzed Aromatic Halogen Exchange 

 Feng, Y.;  Luo, H.;   Zheng, W.;  Matsunaga, S.;  Lin, L.* ACS Catalysis 2022, 12, 11089−11096. 


            


13. Nickel-Catalyzed Thioesterification Enabled by a Visible-Light Organophotoredox Catalyst under Mild Conditions 

 Zheng, W.; Xu. Y.; Lin, L.* ChemPhotoChem 2022, 6,  https://doi.org/10.1002/cptc.202100264


     


12. Cobalt(III)/Chiral Carboxylic Acid-Catalyzed Enantioselective Synthesis of Benzothiadiazine-1-Oxides via C–H Activation

Hirata, Y.; Sekine, D.; Kato, Y.; Lin, L.; Kojima, M.; Yoshino, T.*; Matsunaga, S.* Angew. Chem., Int. Ed. 2022, https://doi.org/10.1002/anie.202205341


11. Ru(II)/Chiral Carboxylic Acid-Catalyzed Enantioselective C–H Functionalization of Sulfoximines

Huang, L.-T.; Hirata, Y.; Kato, Y.; Lin, L.; Kojima, M.; Yoshino, T.*; Matsunaga, S.*Synthesis 2021, 53, DOI: 10.1055/a-1588-0072


10. Development of Pseudo-C2-symmetric Chiral Binaphthyl Monocarboxylic Acids for Enantioselective C(sp3)–H Functionalization Reactions under Rh(III) Catalysis 

Kato,Y.;  Lin, L*; Kojima, M.; Yoshino, T.*; Matsunaga S.* ACS Catalysis 2021, 11, 4271−4277. https://doi.org/10.1021/acscatal.1c00765   


 


9. Photocatalytic Generation of π-allyltitanium Complexes via Radical intermediates

Li, F.; Lin,S.; Chen,Y.; Shi, C.; Yan, H.; Li, C.; Wu, C.; Lin, L.; Duan, C.; Shi, L.* Angew. Chem. Int. Ed. 2021, 60, 1561-1566. 

Description unavailable

8. Cp2TiIIICl Catalysis in a New Light 

Chen, Y.; Lin, S.;  Li, F.;  Zhang, X.;  Lin, L.;  Shi, L.* ChemPhotoChem 2020, 4, 659–663.

 

Before DLUT

7. Chiral Carboxylic Acid‐Enabled Achiral Rhodium(III)-Catalyzed Enantioselective C−H Functionalization

Lin, L*; Fukagawa, S.; Sekine, D.; Tomita, E.; Yoshino, T.*; Matsunaga S.* Angew. Chem. Int. Ed. 2018. 57, 12048-12052. (SYNFACT) https://doi.org/10.1002/anie.201807610

6. Palladium-Catalyzed Long-Range Deconjugative Isomerization of Highly Substituted α,β-Unsaturated Carbonyl Compounds

Lin, L.; Romano, C.; Mazet, C. *  J. Am. Chem. Soc. 2016, 138, 10344−10350. https://doi.org/10.1021/jacs.6b06390

5. Catalytic Asymmetric Iterative/Domino Aldehyde Cross-Aldol Reactions for the Rapid and Flexible Synthesis of 1,3-Polyols.

Lin, L.; Yamamoto, K.; Mitsunuma, H.; Kanzaki, Y.; Matsunaga, S. * Kanai, M. *  J. Am. Chem. Soc. 2015, 137, 15418–15421. (SYNFACT of the month) https://doi.org/10.1021/jacs.5b11192

4. Scope and mechanism in palladium-catalyzed isomerizations of highly substituted allylic, homoallylic, and alkenyl alcohols.

Larionov, E.; Lin, L.; Guénée, L.; Mazet, C.* J. Am. Chem. Soc. 2014, 136, 16882–16994. https://doi.org/10.1021/ja508736u

3. Rh-catalyzed aldehyde-aldehyde cross-aldol reaction under base-free conditions: in situ aldehyde-derived enolate formation through orthogonal activation. 

Lin, L.; Yamamoto, K.: Matsunaga, S. *; Kanai, M. * Chem. Asian J. 2013, 8, 2974-2983. (Selected as a Frontispiece) https://doi.org/10.1002/asia.201300928

2. Rhodium-catalyzed cross-aldol reaction: In situ aldehyde-enolate formation from allyloxyboranes and primary allylic alcohols

Lin, L.; Yamamoto, K.: Matsunaga, S.; Kanai, M. *  Angew. Chem. Int. Ed. 2012, 51, 10275–10279. (SYNFACT)  https://doi.org/10.1002/anie.201205680

1. Catalytic asymmetric Ring-Opening of meso-Aziridines with malonates under heterodinuclear rare earth metal schiff  base catalysis

Xu, Y.; Lin,L.; Kanai, M.; Matsunaga, S. *; Shibasaki, M. *  J. Am. Chem. Soc. 2011, 133, 5791–5793. https://pubs.acs.org/doi/10.1021/ja201492x

Abstract Image