3478
当前位置: 首页   >  成果及论文
成果及论文

2022

[1]  Zhao Z, Liu W, Jiang Y, et al. Solidification of heavy metals in lead smelting slag and development of cementitious materials[J]. Journal of Cleaner Production, 2022, 359: 132134.

[2]  ZHENG W, CUI T, LI H. Combined technologies for the remediation of soils contaminated by organic pollutants. A review [J]. Environmental Chemistry Letters, 2022, 20(3): 2043-2062.

[3]  HE D, ZHENG W, CHEN Z, et al. Influence of Paste Strength on the Strength of Expanded Polystyrene (EPS) Concrete with Different Densities [J]. Polymers (Basel), 2022, 14(13) : 2529.

[4]  Wang F, Zheng W, Gou Y, et al. Thermal behaviors of energy storage process of eutectic hydrated salt phase change materials modified by Nano-TiO2[J]. Journal of Energy Storage, 2022, 53: 105077.

[5]  Wang F, Zheng W, Qiao Z, et al. Study of the structural-functional lightweight concrete containing novel hollow ceramsite compounded with paraffin[J]. Construction and Building Materials, 2022, 342: 127954.

[6]  Zhu H, Chen J, Li H. Effect of ultrafine pozzolanic powders on durability of fabricated hydraulic lime[J]. Case Studies in Construction Materials, 2022, 17: e01191.

[7]  Wu F, Li H. Effects of high salinity wastewater on the properties of coal gasification residue-based cementitious material[J]. Thermal Science, 2021, 25(6 Part A): 4161-4169.

[8]  Zhang D W, Zhao K F, Peng S Y, et al. Improvement of the thermal properties of alkali-activated fly ash after high temperature by the Fe-based solid wastes[J]. Case Studies in Construction Materials, 2022, 17: e01303.

[9]  Xu Z, Zhang D, Li H, et al. Effect of FA and GGBFS on compressive strength, rheology, and printing properties of cement-based 3D printing material[J]. Construction and Building Materials, 2022, 339: 127685.

[10]  Zhang D W, Sun X M, Xu Z Y, et al. Stability of superplasticizer on NaOH activators and influence on the rheology of alkali-activated fly ash fresh pastes[J]. Construction and Building Materials, 2022, 341: 127864.

[11]  Liu W, Jiang Y, Zhao Z, et al. Material innovation and performance optimization of multi-solid waste-based composite grouting materials for semi-flexible pavements[J]. Case Studies in Construction Materials, 2022, 17: e01624.

[12]  Zhang D W, Sun X M, Zhao K F, et al. An application of alkali-activated fly-ash materials with low-compressive strength: Thermal stability at elevated temperatures[J]. Journal of Building Engineering, 2022, 61: 105256.

[13]  朱绘美, 张煜雯, 李辉. 超细粉煤灰和减水剂对碱激发粉煤灰胶凝材料的常温性能影响 [J]. 建筑材料学报: 1-13.

[14]  朱绘美, 迂晨, 张新东等. 粉煤灰性质对微波加热碱激发材料强度发展的影响 [J]. 建筑材料学报, 2023, 26(05): 449-56.

[15]  徐晓珊, 吴锋, 李辉. 煤化工高盐废水拌合水泥制备生态胶凝材料的性能 [J]. 环境工程学报, 2022, 16(06): 1909-16.

[16]  李肽脂, 吴锋, 李辉等. 复合激发煤气化渣基胶凝材料的制备 [J]. 环境工程学报, 2022, 16(07): 2356-64.

[17]  肖建敏, 胡亚茹. 长龄期下水化硅酸镁凝胶微观结构 [J]. 硅酸盐学报, 2022, 50(08): 2221-9.

[18]  郑伍魁, 赵丹, 朱毅等. 陶粒工程应用的趋势分析及研究进展 [J]. 材料导报, 2023, 37(07): 102-13.


2021

[1]  Li H, Wang Z, Zhang Y, et al. Composite application of naphthalene and melamine-based superplasticizers in alkali activated fly ash (AAFA)[J]. Construction and Building Materials, 2021, 297: 123651.

[2] Zhang D W, Zhao K F, Li H, et al. Dispersion properties of fly ash–slag powders under the different environment[J]. Construction and Building Materials, 2021, 296: 123649.

[3] Wu F, Li H, Yang K. Effects of mechanical activation on physical and chemical characteristics of coal-gasification slag[J]. Coatings, 2021, 11(8): 902.

[4] Zhu H, Qiao P, Zhang Y, et al. Efflorescence of microwave-heated alkali-activated cement synthesized with ultrafine coal combustion ashes[J]. Fuel, 2021, 303: 121225.

[5] Yang Y, Li H, Zheng W. Highly effective chromium immobilization by an ultrafine fly ash-based core-shell structure[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126: 205-210.

[6] Zheng W, Cui T, Li H, et al. Novel dry-suspension granulation process for preparing pressed powders of ceramic tiles[J]. Powder Technology, 2021, 377: 274-280.

[7] Zheng W, He D, Wang Y, et al. Preparation of cement-based color facing mortar by copper pyrometallurgical slag modification: Efficient utilization of high-iron-content slag[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105888.

[8] Zhang D W, Zhao K, Wang D, et al. Relationship of amorphous gel-microstructure-elastoviscosity properties of alkali-activated materials fresh pastes with different Ms waterglass[J]. Construction and Building Materials, 2021, 287: 123023.

[9] Li H, Wang F, Zheng W. Study of a novel hollow ceramsite compounded with paraffin phase change materials for energy storage[J]. Construction and Building Materials, 2021, 309: 125042.

[10] Yang K, Li H, Dang F, et al. The existing forms of denitrifiable reductive groups in sludge[J]. GLOBAL NEST JOURNAL, 2022, 24(1): 153-159.

[11]朱毅,郑伍魁,王飞等.多孔陶粒孔结构设计及其蓄水性能[J].材料科学与工程学报,2023,41(02):207-215.

[12] 朱绘美,张煜雯,迂晨等.微波养护阶段碱激发粉煤灰胶凝材料的力学性能[J].建筑材料学报,2022,25(06):558-564.


2020年

[1] Zhu H, Li H, Ma X, et al. Combined effect of coal chemical wastewater and PC on preparing of coal-to-liquids residue-based alkali activated materials[J]. Journal of Hazardous Materials, 2021, 405: 124229.

[2] Zhang D W, Zhao K F, Xie F, et al. Effect of water-binding ability of amorphous gel on the rheology of geopolymer fresh pastes with the different NaOH content at the early age[J]. Construction and Building Materials, 2020, 261: 120529.

[3] Li H, Yang Y, Zheng W, et al. Immobilization of high concentration hexavalent chromium via core-shell structured lightweight aggregate: a promising soil remediation strategy[J]. Chemical Engineering Journal, 2020, 401: 126044.

[4] Zhang D W, Zhao K F, Xie F, et al. Rheology and agglomerate structure of fresh geopolymer pastes with different Ms ratio of waterglass[J]. Construction and Building Materials, 2020, 250: 118881.

[5] 李辉,赵炜,周媛等.秦巴山脉区域传统产业现状及绿色转型发展对策[J].中国工程科学,2020,22(01):73-79.

[6] 李雪晨,李辉,白云等.微波场下微珠对碱激发粉煤灰早期力学性能的影响[J].建筑材料学报,2020,23(04):816-822.