8291
当前位置: 首页   >  成果及论文
成果及论文

73. Yang, C.; Shi, L.; Wang, W.; Xia, J.-B.; Li, F. Rhodium-catalyzed aminoacylation of alkenes via carbonylative C–H activation toward poly(hetero)cyclic alkylarylketones. Organic Chemistry Frontiers, 2023. DOI:  10.1039/D2QO01777F.

https://pubs.rsc.org/en/Content/ArticleLanding/2023/QO/D2QO01777F

Graphical abstract: Rhodium-catalyzed aminoacylation of alkenes via carbonylative C–H activation toward poly(hetero)cyclic alkylarylketones


72. Wu, M.; Gao, G.; Yang, C.; Sun, P.; Li, F. Highly Active Rh Catalysts with Strong π-Acceptor Phosphine-Containing Porous Organic Polymers for Alkene Hydroformylation. The Journal of Organic Chemistry, 2022. DOI:10.1021/acs.joc.2c02105.

https://pubs.acs.org/doi/full/10.1021/acs.joc.2c02105


71. Yang, C.; Shi, L.; Wang, F.; Su, Y.; Xia, J.-B.; Li, F. Rhodium-Catalyzed Asymmetric (3 + 2 + 2) Annulation via N–H/C–H Dual Activation and Internal Alkyne Insertion toward N-Fused 5/7 Bicycles. ACS Catalysis, 2022, 12, 14194–14208. DOI: 10.1021/acscatal.2c04373.

https://pubs.acs.org/doi/10.1021/acscatal.2c04373


70. Xi, Y.; Wang, J.; Li, J.; Li, F. Hydrogen Activation by C2H2 Acting as a Substrate Molecule on Atomically Dispersed Catalysts for the Semi‐hydrogenation of C2H2ChemistrySelect, 2022, 7e202201854. DOI: 10.1002/slct.202201854.

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.202201854

Description unavailable


69. Gao, G.; Zhao, Z.; Wang, J.; Xi, Y.; Sun, P.; Li, F. Boosting Chiral Carboxylic Acid Hydrogenation by Tuning Metal-MOx-Support Interaction in Pt-ReOx/TiO2 Catalysts. Chinese Journal of Catalysis, 2022, 43, 2034–2044. DOI: 10.1016/s1872-2067(21)64021-4.

https://www.sciencedirect.com/science/article/pii/S1872206721640214?via%3Dihub


68. Wang, J.; Liu, H.; Wang, T.; Xi, Y.; Sun, P.; Li, F. Boosting CO2 Hydrogenation to Methanol via Cu-Zn Synergy over Highly Dispersed Cu,Zn-Codoped ZrO2 Catalysts. Catalysis Today, 2022. https://doi.org/10.1016/j.cattod.2022.05.034.

https://www.sciencedirect.com/science/article/pii/S0920586122001973

ga1


67. Zhao, Z.; Gao, G.; Xi, Y.; Wang, J.; Sun, P.; Liu, Q.; Yan, W.; Cui, Y.; Jiang, Z.; Li, F. Selective and Stable Upgrading of Biomass-Derived Furans into Plastic Monomers by Coupling Homogeneous and Heterogeneous Catalysis. Chem, 2022, 8, 1034–1049. DOI: 10.1016/j.chempr.2021.12.004.

https://www.sciencedirect.com/science/article/abs/pii/S2451929421006355?via%3Dihub


66. Li, C.; Sun, P.; Li, F. Hierarchical Zeolites‐confined Metal Catalysts and Their Enhanced Catalytic Performances. Chemistry – An Asian Journal, 2021, 16, 2795–2805. DOI: 10.1002/asia.202100728.

https://onlinelibrary.wiley.com/doi/10.1002/asia.202100728

Description unavailable


65. Long, X.; Wang, J.; Gao, G.; Nie, C.; Sun, P.; Xi, Y.; Li, F. Direct Oxidative Amination of the Methyl C–H Bond in N-Heterocycles over Metal-Free Mesoporous Carbon. ACS Catalysis, 2021, 11, 10902–10912. DOI: 10.1021/acscatal.1c02264.

https://pubs.acs.org/doi/10.1021/acscatal.1c02264


64. Yue, C.; Xing, Q.; Sun, P.; Zhao, Z.; Lv, H.; Li, F. Enhancing Stability by Trapping Palladium inside N-Heterocyclic Carbene-Functionalized Hypercrosslinked Polymers for Heterogeneous C-C Bond Formations. Nature Communications, 2021, 12, 1875. DOI: 10.1038/s41467-021-22084-5.

https://www.nature.com/articles/s41467-021-22084-5

figure 5


63. Shi, L.; Wen, M.; Li, F. Palladium‐Catalyzed Tandem Carbonylative Aza‐Wacker‐Type Cyclization of Nucleophile Tethered Alkene to Access Fused N‐Heterocycles. Chinese Journal of Chemistry, 2020, 39, 317–322. DOI: 10.1002/cjoc.202000491.

https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202000491

image


62. Yue, C.; Wang, W.; Li, F. Building N‐Heterocyclic Carbene into Triazine‐Linked Polymer for Multiple CO2 Utilization. ChemSusChem, 2020, 13, 5996–6004. DOI: 10.1002/cssc.202002154.

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202002154

Description unavailable


61. Li, F.; Shi, L.; Wen, M. Efficient Access to Isoquinolines via Rhodium-Catalyzed Oxidative Annulation of Pyridyl C–H Bonds Directed by Carbonyl with Internal Alkynes. Synthesis, 2020, 53, 538–546. DOI: 10.1055/s-0040-1707387.

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0040-1707387


60. Long, X.; Li, Z.; Gao, G.; Sun, P.; Wang, J.; Zhang, B.; Zhong, J.; Jiang, Z.; Li, F. Graphitic Phosphorus Coordinated Single Fe Atoms for Hydrogenative Transformations. Nature Communications, 2020, 11, 4074. DOI: 10.1038/s41467-020-17903-0.

https://www.nature.com/articles/s41467-020-17903-0

figure 1


59. Yang, L.; Shi, L.; Xia, C.; Li, F. Intermediate Formation Enabled Regioselective Access to Amide in the Pd-Catalyzed Reductive Aminocarbonylation of Olefin with Nitroarene. Chinese Journal of Catalysis, 2020, 41, 1152–1160. DOI: 10.1016/s1872-2067(20)63561-6.

https://www.sciencedirect.com/science/article/pii/S1872206720635616?via%3Dihub


58. Zhang, J.; Sun, P.; Gao, G.; Wang, J.; Zhao, Z.; Muhammad, Y.; Li, F. Enhancing Regioselectivity via Tuning the Microenvironment in Heterogeneous Hydroformylation of Olefins. Journal of Catalysis, 2020, 387, 196–206. DOI: 10.1016/j.jcat.2020.03.032.

https://www.sciencedirect.com/science/article/pii/S0021951720301160?via%3Dihub


57. Wang, X.; Zhao, Z.; Sun, P.; Li, F. One-Step Synthesis of Supported High-Index Faceted Platinum–Cobalt Nanocatalysts for an Enhanced Oxygen Reduction Reaction. ACS Applied Energy Materials, 2020, 3, 5077–5082. DOI: 10.1021/acsaem.0c00801.

https://pubs.acs.org/doi/10.1021/acsaem.0c00801


56. Zhao, J.; Li, P.; Xu, Y.; Shi, Y.; Li, F. Nickel-Catalyzed Transformation of Diazoacetates to Alkyl Radicals Using Alcohol as a Hydrogen Source. Organic Letters, 2019, 21, 9386–9390. DOI: 10.1021/acs.orglett.9b03610.

https://pubs.acs.org/doi/10.1021/acs.orglett.9b03610


55. Wang, J.; Pan, X.; Li, F. Mesoporous Carbon with High Content of Graphitic Nitrogen for Selective Oxidation of Ethylbenzene. RSC Advances, 2019, 9, 28253–28257. DOI: 10.1039/c9ra05386g.

https://pubs.rsc.org/en/content/articlelanding/2019/RA/C9RA05386G

Graphical abstract: Mesoporous carbon with high content of graphitic nitrogen for selective oxidation of ethylbenzene


54. Wu, J.; Gao, G.; Li, Y.; Sun, P.; Wang, J.; Li, F. Highly Chemoselective Hydrogenation of Lactone to Diol over Efficient Copper-Based Bifunctional Nanocatalysts. Applied Catalysis B: Environmental, 2019, 245, 251–261. DOI: 10.1016/j.apcatb.2018.12.068.

https://www.sciencedirect.com/science/article/pii/S0926337318312219?via%3Dihub


53. Zhao, T.; Li, F.; Yu, H.; Ding, S.; Li, Z.; Huang, X.; Li, X.; Wei, X.; Wang, Z.; Lin, H. Synthesis of Mesoporous ZSM-5 Zeolites and Catalytic Cracking of Ethanol and Oleic Acid into Light Olefins. Applied Catalysis A: General, 2019, 575, 101–110. DOI: 10.1016/j.apcata.2019.02.011.

https://www.sciencedirect.com/science/article/pii/S0926860X19300663?via%3Dihub


52. Lv, H.; Wang, W.; Li, F. Porous Organic Polymers with Built-in N-Heterocyclic Carbenes: Selective and Efficient Heterogeneous Catalyst for the Reductive N-Formylation of Amines with CO2Chemistry - A European Journal, 2018, 24, 16588–16594. DOI: 10.1002/chem.201803364.

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.201803364

Description unavailable


51. Liu, G.; Liu, Z.; Li, J.; Zeng, M.; Li, Z.; He, L.; Li, F. Chitosan/Phytic Acid Hydrogel as a Platform for Facile Synthesis of Heteroatom-Doped Porous Carbon Frameworks for Electrocatalytic Oxygen Reduction. Carbon, 2018, 137, 68–77. https://doi.org/10.1016/j.carbon.2018.05.027.

https://www.sciencedirect.com/science/article/pii/S000862231830486X?via%3Dihub

Image 1


50. Yang, L.; Shi, L.; Xing, Q.; Huang, K.-W.; Xia, C.; Li, F. Enabling CO Insertion into o-Nitrostyrenes beyond Reduction for Selective Access to Indolin-2-One and Dihydroquinolin-2-One Derivatives. ACS Catalysis, 2018, 8, 10340–10348. DOI: 10.1021/acscatal.8b02863.

https://pubs.acs.org/doi/10.1021/acscatal.8b02863



49. Wang, W.; Cui, L.; Sun, P.; Shi, L.; Yue, C.; Li, F. Reusable N-Heterocyclic Carbene Complex Catalysts and Beyond: A Perspective on Recycling Strategies. Chemical Reviews, 2018, 118, 9843–9929. DOI: 10.1021/acs.chemrev.8b00057.

https://pubs.acs.org/doi/10.1021/acs.chemrev.8b00057


48. Li, P.; Zhao, J.; Shi, L.; Wang, J.; Shi, X.; Li, F. Iodine-Catalyzed Diazo Activation to Access Radical Reactivity. Nature Communications, 2018, 9, 1972. DOI: 10.1038/s41467-018-04331-4.

https://www.nature.com/articles/s41467-018-04331-4

figure 1


47. Zhao, Z.; Wang, X.; Si, J.; Yue, C.; Xia, C.; Li, F. Truncated Concave Octahedral Cu2O Nanocrystals with {Hkk} High-Index Facets for Enhanced Activity and Stability in Heterogeneous Catalytic Azide–Alkyne Cycloaddition. Green Chemistry, 2018, 20, 832–837. DOI: 10.1039/c7gc03020g.

https://pubs.rsc.org/en/content/articlelanding/2018/GC/C7GC03020G

Graphical abstract: Truncated concave octahedral Cu2O nanocrystals with {hkk} high-index facets for enhanced activity and stability in heterogeneous catalytic azide–alkyne cycloaddition


46. Li, J.; Liu, G.; Shi, L.; Xing, Q.; Li, F. Cobalt Modified N-Doped Carbon Nanotubes for Catalytic C=C Bond Formation via Dehydrogenative Coupling of Benzyl Alcohols and DMSO. Green Chemistry, 2017, 19, 5782–5788. DOI: 10.1039/c7gc02335a.

https://pubs.rsc.org/en/content/articlelanding/2017/GC/C7GC02335A

Graphical abstract: Cobalt modified N-doped carbon nanotubes for catalytic C [[double bond, length as m-dash]] C bond formation via dehydrogenative coupling of benzyl alcohols and DMSO


45. Wu, J.; Gao, G.; Sun, P.; Long, X.; Li, F. Synergetic Catalysis of Bimetallic CuCo Nanocomposites for Selective Hydrogenation of Bioderived Esters. ACS Catalysis, 2017, 7, 7890–7901. DOI: 10.1021/acscatal.7b02837.

https://pubs.acs.org/doi/10.1021/acscatal.7b02837


44. Li, J.; Liu, G.; Long, X.; Gao, G.; Wu, J.; Li, F. Different Active Sites in a Bifunctional Co@N-Doped Graphene Shells Based Catalyst for the Oxidative Dehydrogenation and Hydrogenation Reactions. Journal of Catalysis, 2017, 355, 53–62. DOI: 10.1016/j.jcat.2017.09.007.

https://www.sciencedirect.com/science/article/pii/S0021951717303299?via%3Dihub


43. Gao, G.; Sun, P.; Li, Y.; Wang, F.; Zhao, Z.; Qin, Y.; Li, F. Highly Stable Porous-Carbon-Coated Ni Catalysts for the Reductive Amination of Levulinic Acid via an Unconventional Pathway. ACS Catalysis, 2017, 7, 4927–4935. DOI: 10.1021/acscatal.7b01786.

https://pubs.acs.org/doi/10.1021/acscatal.7b01786


42. Xing, Q.; Lv, H.; Xia, C.; Li, F. Palladium-Catalyzed Intermolecular Carbonylative Cross-Coupling of Heteroaryl C(Sp2)–H Bonds with Amines: An Efficient Strategy for Oxidative Aminocarbonylation of Azoles. Chemical Communications, 2017, 53, 6914–6917. DOI: 10.1039/c7cc03274a.

https://pubs.rsc.org/en/content/articlelanding/2017/CC/C7CC03274A

Graphical abstract: Palladium-catalyzed intermolecular carbonylative cross-coupling of heteroaryl C(sp2)–H bonds with amines: an efficient strategy for oxidative aminocarbonylation of azoles


41. Li, P.; Zhao, J.; Li, X.; Li, F. Alkali-Induced Ring-Opening of 2-Amidodihydrofuran and Manganese-Catalyzed Aerobic Dehydrogenation Annulation: Access to Functionalized Oxazole. The Journal of Organic Chemistry, 2017, 82, 4569–4577. DOI: 10.1021/acs.joc.7b00112.

https://pubs.acs.org/doi/10.1021/acs.joc.7b00112


40. Wu, J.; Gao, G.; Li, J.; Sun, P.; Long, X.; Li, F. Efficient and Versatile CuNi Alloy Nanocatalysts for the Highly Selective Hydrogenation of Furfural. Applied Catalysis B: Environmental, 2017, 203, 227–236. DOI: 10.1016/j.apcatb.2016.10.038.

https://www.sciencedirect.com/science/article/pii/S0926337316308013?via%3Dihub


39. Li, X.; Xing, Q.; Li, P.; Zhao, J.; Li, F. Three-Component Povarov Reaction with Alcohols as Alkene Precursors: Efficient Access to 2-Arylquinolines. European Journal of Organic Chemistry, 2017, 2017, 618–625. DOI: 10.1002/ejoc.201601343.

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ejoc.201601343

Description unavailable


38. Sun, P.; Gao, G.; Zhao, Z.; Xia, C.; Li, F. Acidity-Regulation for Enhancing the Stability of Ni/HZSM-5 Catalyst for Valeric Biofuel Production. Applied Catalysis B: Environmental, 2016, 189, 19–25. DOI: 10.1016/j.apcatb.2016.02.026.

https://www.sciencedirect.com/science/article/pii/S0926337316301084?via%3Dihub


37. Wang, W.; Zhao, L.; Lv, H.; Zhang, G.; Xia, C.; Hahn, F. E.; Li, F. Modular “Click” Preparation of Bifunctional Polymeric Heterometallic Catalysts. Angewandte Chemie International Edition, 2016, 55, 7665–7670. DOI: 10.1002/anie.201600999.

https://onlinelibrary.wiley.com/doi/10.1002/anie.201600999

Description unavailable


36. Lv, H.; Xing, Q.; Yue, C.; Lei, Z.; Li, F. Solvent-Promoted Catalyst-Free N-Formylation of Amines Using Carbon Dioxide under Ambient Conditions. Chemical Communications, 2016, 52, 6545–6548. DOI: 10.1039/c6cc01234e.

https://pubs.rsc.org/en/content/articlelanding/2016/CC/C6CC01234E

Graphical abstract: Solvent-promoted catalyst-free N-formylation of amines using carbon dioxide under ambient conditions


35. Xing, Q.; Lv, H.; Xia, C.; Li, F. Iron-Catalyzed Aerobic Oxidative Cleavage of the C–C σ-Bond Using Air as the Oxidant: Chemoselective Synthesis of Carbon Chain-Shortened Aldehydes, Ketones and 1,2-Dicarbonyl Compounds. Chemical Communications, 2016, 52, 489–492. DOI: 10.1039/c5cc07390a.

https://pubs.rsc.org/en/content/articlelanding/2016/CC/C5CC07390A

Graphical abstract: Iron-catalyzed aerobic oxidative cleavage of the C–C σ-bond using air as the oxidant: chemoselective synthesis of carbon chain-shortened aldehydes, ketones and 1,2-dicarbonyl compounds


34. Zhao, J.; Li, P.; Li, X.; Xia, C.; Li, F. Straightforward Synthesis of Functionalized Chroman-4-Ones through Cascade Radical Cyclization-Coupling of 2-(Allyloxy)Arylaldehydes. Chemical Communications, 2016, 52, 3661–3664. DOI: 10.1039/c5cc09730d.

https://pubs.rsc.org/en/content/articlelanding/2016/CC/C5CC09730D

Graphical abstract: Straightforward synthesis of functionalized chroman-4-ones through cascade radical cyclization-coupling of 2-(allyloxy)arylaldehydes


33. Zhao, J.; Li, P.; Xia, C.; Li, F. Facile Synthesis of Trisubstituted Carbazoles by Acid‐Catalyzed Ring‐Opening Annulation of 2‐Amidodihydrofurans with Indoles. Chemistry – A European Journal, 2015, 21, 16383–16386. DOI: 10.1002/chem.201503260.

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.201503260

Description unavailable


32. Long, X.; Sun, P.; Li, Z.; Lang, R.; Xia, C.; Li, F. Magnetic Co/Al2O3 Catalyst Derived from Hydrotalcite for Hydrogenation of Levulinic Acid to γ-Valerolactone. Chinese Journal of Catalysis, 2015, 36, 1512–1518. DOI: 10.1016/s1872-2067(15)60934-2.

https://www.sciencedirect.com/science/article/pii/S1872206715609342?via%3Dihub


31. Yi, J.; Yang, L.; Xia, C.; Li, F. Nickel-Catalyzed Alkynylation of a C(Sp2)–H Bond Directed by an 8-Aminoquinoline Moiety. The Journal of Organic Chemistry, 2015, 80, 6213–6221. DOI: 10.1021/acs.joc.5b00669.

https://pubs.acs.org/doi/10.1021/acs.joc.5b00669


30. Xing, Q.; Lv, H.; Xia, C.; Li, F. Intramolecular Cooperative CC Bond Cleavage Reaction of 1,3-Dicarbonyl Compounds with 2-Iodoanilines to Giveo-(N-Acylamino)Aryl Ketones and Multisubstituted Indoles. ChemistryA European Journal, 2015, 21, 8591–8596. DOI: 10.1002/chem.201500272.

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.201500272

Description unavailable


29. Li, P.; Zhao, J.; Xia, C.; Li, F. The Development of Carbene-Stabilized N–O Radical Coupling Strategy in Metal-Free Regioselective C–H Azidation of Quinoline N-Oxides. Organic Chemistry Frontiers, 2015, 2, 1313–1317. DOI: 10.1039/c5qo00204d.

https://pubs.rsc.org/en/content/articlelanding/2015/QO/C5QO00204D

Graphical abstract: The development of carbene-stabilized N–O radical coupling strategy in metal-free regioselective C–H azidation of quinoline N-oxides


28. Li, J.; Li, Z.; Tong, J.; Xia, C.; Li, F. Nitrogen-Doped Ordered Mesoporous Carbon Sphere with Short Channel as an Efficient Metal-Free Catalyst for Oxygen Reduction Reaction. RSC Advances, 2015, 5, 70010–70016. DOI: 10.1039/c5ra10484j.

https://pubs.rsc.org/en/content/articlelanding/2015/RA/C5RA10484J

Graphical abstract: Nitrogen-doped ordered mesoporous carbon sphere with short channel as an efficient metal-free catalyst for oxygen reduction reaction


27. Zhang, G.; Lang, R.; Wang, W.; Lv, H.; Zhao, L.; Xia, C.; Li, F. Light-Sensitive and Recoverable N-Heterocyclic Carbene Copper(I) Complex in Homogeneous Catalysis. Advanced Synthesis & Catalysis, 2015, 357, 917–922. https://doi.org/10.1002/adsc.201401140.

https://onlinelibrary.wiley.com/doi/10.1002/adsc.201401140

image


26. Zhao, J.; Li, P.; Xia, C.; Li, F. Metal-Free Regioselective C-3 Nitration of Quinoline N-Oxides with Tert-Butyl Nitrite. RSC Advances, 2015, 5, 32835–32838. DOI: 10.1039/c5ra04632g.

https://pubs.rsc.org/en/content/articlelanding/2015/RA/C5RA04632G

Graphical abstract: Metal-free regioselective C-3 nitration of quinoline N-oxides with tert-butyl nitrite


25. Shi, L.; Zhong, X.; She, H.; Lei, Z.; Li, F. Manganese Catalyzed C–H Functionalization of Indoles with Alkynes to Synthesize Bis/Trisubstituted Indolylalkenes and Carbazoles: The Acid Is the Key to Control Selectivity. Chemical Communications, 2015, 51, 7136–7139. DOI: 10.1039/c5cc00249d.

https://pubs.rsc.org/en/content/articlelanding/2015/CC/C5CC00249D

Graphical abstract: Manganese catalyzed C–H functionalization of indoles with alkynes to synthesize bis/trisubstituted indolylalkenes and carbazoles: the acid is the key to control selectivity


24. Li, Z.; Li, G.; Jiang, L.; Li, J.; Sun, G.; Xia, C.; Li, F. Ionic Liquids as Precursors for Efficient Mesoporous Iron-Nitrogen-Doped Oxygen Reduction Electrocatalysts. Angewandte Chemie International Edition, 2015, 54, 1494–1498. DOI: 10.1002/anie.201409579.

https://onlinelibrary.wiley.com/doi/10.1002/anie.201409579

Description unavailable


23. Li, P.; Zhao, J.; Xia, C.; Li, F. Direct Oxidative Coupling of Enamides and 1,3-Dicarbonyl Compounds: A Facile and Versatile Approach to Dihydrofurans, Furans, Pyrroles, and Dicarbonyl Enamides. Organic Letters, 2014, 16, 5992–5995. DOI: 10.1021/ol503009f.

https://pubs.acs.org/doi/10.1021/ol503009f


22. Sun, P.; Gao, G.; Zhao, Z.; Xia, C.; Li, F. Stabilization of Cobalt Catalysts by Embedment for Efficient Production of Valeric Biofuel. ACS Catalysis, 2014, 4, 4136–4142. DOI: 10.1021/cs501409s.

https://pubs.acs.org/doi/10.1021/cs501409s


21. Liu, J.; Zhang, X.; Shi, L.; Liu, M.; Yue, Y.; Li, F.; Zhuo, K. Base-Promoted Synthesis of Coumarins from Salicylaldehydes and Aryl-Substituted 1,1-Dibromo-1-Alkenes under Transition-Metal-Free Conditions. Chemical Communications, 2014, 50, 9887. DOI: 10.1039/c4cc04377d.

https://pubs.rsc.org/en/content/articlelanding/2014/CC/C4CC04377D

Graphical abstract: Base-promoted synthesis of coumarins from salicylaldehydes and aryl-substituted 1,1-dibromo-1-alkenes under transition-metal-free conditions


20. Shi, L.; Xue, L.; Lang, R.; Xia, C.; Li, F. Four-Component Synthesis of β-Enaminone and Pyrazole through Phosphine-Free Palladium-Catalyzed Cascade Carbonylation. ChemCatChem, 2014, 6, 2560–2566. https://doi.org/10.1002/cctc.201402277.

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.201402277

Description unavailable


19. Yang, Y.; Gao, G.; Zhang, X.; Li, F. Facile Fabrication of Composition-Tuned Ru–Ni Bimetallics in Ordered Mesoporous Carbon for Levulinic Acid Hydrogenation. ACS Catalysis, 2014, 4, 1419–1425. DOI: 10.1021/cs401030u.

https://pubs.acs.org/doi/10.1021/cs401030u


18. Li, Z.; Li, J.; Liu, J.; Zhao, Z.; Xia, C.; Li, F. Palladium Nanoparticles Supported on Nitrogen-Functionalized Active Carbon: A Stable and Highly Efficient Catalyst for the Selective Hydrogenation of Nitroarenes. ChemCatChem, 2014, 6, 1333. DOI: 10.1002/cctc.201301037.

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.201301037

Description unavailable


17. Wang, W.; Zheng, A.; Zhao, P.; Xia, C.; Li, F. Au-NHC@Porous Organic Polymers: Synthetic Control and Its Catalytic Application in Alkyne Hydration Reactions. ACS Catalysis, 2013, 4, 321–327. DOI: 10.1021/cs400983y.

https://pubs.acs.org/doi/10.1021/cs400983y


16. Zhao, J.; Li, P.; Xia, C.; Li, F. Direct N-Acylation of Azoles via a Metal-Free Catalyzed Oxidative Cross-Coupling Strategy. Chemical Communications, 2014, 50, 4751. https://doi.org/10.1039/c4cc01587h.

https://pubs.rsc.org/en/content/articlelanding/2014/CC/c4cc01587h

Graphical abstract: Direct N-acylation of azoles via a metal-free catalyzed oxidative cross-coupling strategy


15. Lang, R.; Xia, C.; Li, F. Carbonylative Diversification of Unactivated Heteroaromatic Compounds. New Journal of Chemistry, 2014, 38, 2732. DOI: 10.1039/c4nj00099d.

https://pubs.rsc.org/en/content/articlelanding/2014/NJ/c4nj00099d

Graphical abstract: Carbonylative diversification of unactivated heteroaromatic compounds


14. Li, P.; Zhao, J.; Lang, R.; Xia, C.; Li, F. Copper-Catalyzed Methyl Esterification of Aromatic Aldehydes and Benzoic Alcohols by TBHP as Both Oxidant and Methyl Source. Tetrahedron Letters, 2014, 55, 390–393. DOI: 10.1016/j.tetlet.2013.11.040.

https://www.sciencedirect.com/science/article/pii/S0040403913019874?via%3Dihub


13. Xing, Q.; Li, P.; Lv, H.; Lang, R.; Xia, C.; Li, F. Acid-Catalyzed Acylation Reaction via C–C Bond Cleavage: A Facile and Mechanistically Defined Approach to Synthesize 3-Acylindoles. Chem. Commun., 2014, 50, 12181–12184. DOI: 10.1039/c4cc05047a.

https://pubs.rsc.org/en/content/articlelanding/2014/CC/C4CC05047A

Graphical abstract: Acid-catalyzed acylation reaction via C–C bond cleavage: a facile and mechanistically defined approach to synthesize 3-acylindoles


12. Li, Z.; Liu, J.; Xia, C.; Li, F. Nitrogen-Functionalized Ordered Mesoporous Carbons as Multifunctional Supports of Ultrasmall Pd Nanoparticles for Hydrogenation of Phenol. ACS Catalysis, 2013, 3, 2440–2448. DOI: 10.1021/cs400506q.

https://pubs.acs.org/doi/10.1021/cs400506q


11. Sun, P.; Long, X.; He, H.; Xia, C.; Li, F. Conversion of Cellulose into Isosorbide over Bifunctional Ruthenium Nanoparticles Supported on Niobium Phosphate. ChemSusChem, 2013, 6, 2190–2197. DOI: 10.1002/cssc.201300701.

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.201300701

Description unavailable

Description unavailable


10. Li, Z.; Liu, J.; Huang, Z.; Yang, Y.; Xia, C.; Li, F. One-Pot Synthesis of Pd Nanoparticle Catalysts Supported on N-Doped Carbon and Application in the Domino Carbonylation. ACS Catalysis, 2013, 3, 839–845. DOI: 10.1021/cs400077r.

https://pubs.acs.org/doi/10.1021/cs400077r


9. LI, D.; SHAN, S.; SHI, L.; LANG, R.; XIA, C.; LI, F. Palladium-Catalyzed Synthesis of Indole-3-Alkynones via Direct Carbonylation of Indoles. Chinese Journal of Catalysis, 2013, 34, 185–192. DOI: 10.1016/s1872-2067(11)60491-9.

https://www.sciencedirect.com/science/article/pii/S1872206711604919?via%3Dihub


8. Wang, W.; Zhang, G.; Lang, R.; Xia, C.; Li, F. pH-Responsive N-Heterocyclic Carbene Copper(i) Complexes: Syntheses and Recoverable Applications in the Carboxylation of Arylboronic Esters and Benzoxazole with Carbon Dioxide. Green Chemistry, 2013, 15, 635. DOI: 10.1039/c3gc36830k.

https://pubs.rsc.org/en/content/articlelanding/2013/GC/c3gc36830k

Graphical abstract: pH-Responsive N-heterocyclic carbene copper(i) complexes: syntheses and recoverable applications in the carboxylation of arylboronic esters and benzoxazole with carbon dioxide


7. Lang, R.; Shi, L.; Li, D.; Xia, C.; Li, F. A General Method for Palladium-Catalyzed Direct Carbonylation of Indole with Alcohol and Phenol. Organic Letters, 2012, 14, 4130–4133. DOI: 10.1021/ol3017726.

https://pubs.acs.org/doi/10.1021/ol3017726


6. Xing, Q.; Shi, L.; Lang, R.; Xia, C.; Li, F. Palladium-Catalyzed Mono- and Double-Carbonylation of Indoles with Amines Controllably Leading to Amides and α-Ketoamides. Chemical Communications, 2012, 48, 11023. DOI: 10.1039/c2cc36341k.

https://pubs.rsc.org/en/content/articlelanding/2012/CC/c2cc36341k

Graphical abstract: Palladium-catalyzed mono- and double-carbonylation of indoles with amines controllably leading to amides and α-ketoamides


5. Hou, C.; Ren, Y.; Lang, R.; Hu, X.; Xia, C.; Li, F. Palladium-Catalyzed Direct Phosphonation of Azoles with Dialkyl Phosphites. Chemical Communications, 2012, 48, 5181. DOI: 10.1039/c2cc30429e.

https://pubs.rsc.org/en/content/articlelanding/2012/CC/c2cc30429e

Graphical abstract: Palladium-catalyzed direct phosphonation of azoles with dialkyl phosphites


4. Zhang, L.; Wu, J.; Shi, L.; Xia, C.; Li, F. Ionically Tagged Benzimidazole Palladium(II) Complex: Preparation and Catalytic Application in Cross-Coupling Reactions. Tetrahedron Letters, 2011, 52, 3897–3901. DOI: 10.1016/j.tetlet.2011.05.079.

https://www.sciencedirect.com/science/article/pii/S0040403911008288?via%3Dihub


3. Wang, W.; Wu, J.; Xia, C.; Li, F. Reusable Ammonium Salt-Tagged NHC–Cu(i) Complexes: Preparation and Catalytic Application in the Three Component Click Reaction. Green Chemistry, 2011, 13, 3440. DOI: 10.1039/c1gc15871f.

https://pubs.rsc.org/en/content/articlelanding/2011/GC/c1gc15871f

Graphical abstract: Reusable ammonium salt-tagged NHC–Cu(i) complexes: preparation and catalytic application in the three component click reaction


2. Xue, L.; Shi, L.; Han, Y.; Xia, C.; Huynh, H. V.; Li, F. Pd–Carbene Catalyzed Carbonylation Reactions of Aryl Iodides. Dalton Transactions, 2011, 40, 7632. DOI: 10.1039/c1dt10433k.

https://pubs.rsc.org/en/content/articlelanding/2011/DT/c1dt10433k

Graphical abstract: Pd–carbene catalyzed carbonylation reactions of aryl iodides


1. Lang, R.; Wu, J.; Shi, L.; Xia, C.; Li, F. Regioselective Rh-Catalyzed Direct Carbonylation of Indoles to Synthesize Indole-3-Carboxylates. Chemical Communications, 2011, 47, 12553. DOI: 10.1039/c1cc15143f.

https://pubs.rsc.org/en/content/articlelanding/2011/CC/c1cc15143f

Graphical abstract: Regioselective Rh-catalyzed direct carbonylation of indoles to synthesize indole-3-carboxylates