19237
当前位置: 首页   >  成果及论文
成果及论文

2024

1. Wang, Z.; Zhang, C.; Wang, S.; Zhang, M.; Chen, X.; Luan, C.; Yu, K. Formation and Transformation of ZnTe and CdTe Magic-Size Clusters Assisted by Their Precursor Compounds. Chem. Mater. 202436, 25202532. https://doi.org/10.1021/acs.chemmater.3c03309

2. Xu, R.; Wang, Z.; Yang, Y.; Gu, C.; Luan, C.; Wang, S.; Chen, X.; Yu, K. Formation and Transformation of CdS Clusters during the Prenucleation Stage and in a Dilute Dispersion at Room Temperature. Nano Lett. 2024, 24, 1294–1302. https://doi.org/10.1021/acs.nanolett.3c04287

3. Zhao, D.; Wang, S.; Xue, J.; Zhang, C.; Wang, S.; Chen, X.; Luan, C.; Yu, K. Formation of ZnSe Magic-size Clusters Displaying Optical Absorption Doublets from Prenucleation Clusters. Nano Res. 2024, 17, 6741–6748. https://doi.org/10.1007/s12274-024-6627-0

4. Xue, J.; Wang, S.; Wang, Z.; Luan, C.; Li, Y.; Chen, X.; Yu, K. Pathway of Room-Temperature Formation of CdSeS Magic-Size Clusters from Mixtures of CdSe and CdS Samples. Small 2024, 202402121. https://doi.org/10.1002/smll.202402121

5. Sun, X.; Wang, S.; Wang, Z.; Shen, Q.; Chen, X.; Chen, Z.; Luan, C.; Yu, K. Lower-Temperature Nucleation and Growth of Colloidal CdTe Quantum Dots Enabled by Prenucleation Clusters with Cd−Te Bond Conservation. J. Am. Chem. Soc2024, 146, 15587–15595. https://doi.org/10.1021/jacs.4c04593

6. Hu, J.; Yang, Y.; Shen, Q.; Wang, S.; Chen, X.; Luan, C.; Yu, K. Room-Temperature Formation of CdTeSe Magic-Size Clusters from Oleate-Capped CdTe Precursor Compounds via CdSe Monomer Substitution. Inorg. Chem. 2024, 63, 11487−11493. https://doi.org/10.1021/acs.inorgchem.4c01775

7. Jiang, Y.; Wang, Z.; Wang, S.; Zhang, C.; Luan, C.; Chen, X.; Yu, K. Development of aqueous-phase CdSeS magic-size clusters at room temperature and quantum dots at elevated temperatures. Nano Res. 2024, https://doi.org/10.1007/s12274-024-6884-y

8. Wang, S.; Wang, Z.; Xue, J.; Chen, X.; Luan, C.; Yu, K.  A Prenucleation-Stage Sample of ZnSe Assisting Lower Temperature Shell Growth on CdSe Magic-Size Clusters via Monomer Addition. Small 2024, 2408285–2408296. https://doi.org/10.1002/smll.202408285


2023

1. Yang, Y.; Shen, Q.; Zhang, C.; Rowell, N.; Zhang, M.; Chen, X.; Luan, C.; Yu, K. Direct and Indirect Pathways of CdTeSe Magic-Size Cluster Isomerization Induced by Surface Ligands at Room Temperature. ACS Cent. Sci. 2023, 9, 519–530. https://doi.org/10.1021/acscentsci.2c01394

2. Wang, D.; Liu, Y.; Rowell, N.; Wang, S.; Zhang, C.; Zhang, M.; Luan, C.; Yu, K. Direct and Indirect Evolution of Photoluminescent Semiconductor CdS Magic-Size Clusters through Their Precursor Compounds. Angew Chem Int Ed. 2023, e202304329. https://doi.org/10.1002/anie

3. Zhang, Y.; Chen, Q.; Chen, S.; Wang, S.; Zhang, M.; Yu, K. Evolution of Aqueous-Phase CdTe Magic-Size Clusters from Their Precursor Compounds. J Phys Chem Lett. 202314, 5188-5193. https://doi.org/10.1021/acs.jpclett.3c01137

4. Wang, T.; Wang, Z.; Wang, S.; Chen, X.; Luan, C.; Yu, K. Thermally-Induced Isomerization of Prenucleation Clusters During the Prenucleation Stage of CdTe Quantum Dots. Angew. Chem. Int. Ed2023, 62, e202310234. https://doi.org/10.1002/anie.202310234

5. Chen, Q.; Zhang, Y.; Chen, S.; Liu, Y.; Zhang, C.; Zhang, M.; Yu, K. Surface-Ligand Tuned Reversible Transformations in Aqueous Environments Between CdSe Magic-Size Clusters and Their Precursor Compounds. Small 2023, 2304277. https://doi.org/10.1002/smll.202304277

6. Chen, S.; Zhang, Y.; Chen, Q.; Zhang, C.; Zhang, M.; Yu, K. Precursor Compound-Assisted Formation of CdS Magic-Size Clusters in Aqueous Solutions. Inorg. Chem. 2023, 62, 18290−18298. https://doi.org/10.1021/acs.inorgchem.3c02980

7. Yu, K.; Schanze, K. S. Commemorating the Nobel Prize in Chemistry 2023 for the Discovery and Synthesis of Quantum Dots. ACS Cent. Sci. 2023, 9, 1989−1992. https://pubs.acs.org/doi/10.1021/acscentsci.3c01296


2022

1. Li, Y.; Rowell, N.; Luan, C.; Zhang, M.; Chen, X.; Yu, K. A Two-Pathway Model for the Evolution of Colloidal Compound Semiconductor Quantum Dots and Magic-Size Clusters. Adv. Mater. 2022, e2107940. https://onlinelibrary.wiley.com/doi/10.1002/adma.202107940

2. Yang, Y.; Li, Y.; Luan, C.; Rowell, N.; Wang, S.; Zhang, C.; Huang, W.; Chen, X.; Yu, K. Transformation Pathways in Colloidal CdTeSe Magic-Size Clusters. Angew. Chem. Int. Ed. 2022, 61, e202114551https://onlinelibrary.wiley.com/doi/10.1002/anie.202114551

3. Zhao, M.; Chen, Q.; Zhu, Y.; Liu, Y.; Zhang, C.; Jiang, G.; Zhang, M.; Yu, K. Precursor Compound Enabled Formation of Aqueous-Phase CdSe Magic-Size Clusters at Room Temperature. Nano Res. 2022, 15, 26342642. https://doi.org/10.1007/s12274-021-3858-1.

4. Yang, X.; Zhang, M.; Shen, Q.; Li, Y.; Luan, C.; Yu, K. The Precursor Compound of Two Types of ZnSe Magic-Sized Clusters. Nano Res. 2022, 15, 465474. https://doi.org/10.1007/s12274-021-3503-z

5. Luan, C.; Shen, Q.; Rowell, N.; Zhang, M.; Chen, X.; Huang, W.; Yu, K. A Real-Time In Situ Demonstration of Direct and Indirect Transformation Pathways in CdTe Magic-Size Clusters at Room Temperature, Angew. Chem. Int. Ed. 2022, e202205784. https://doi.org/10.1002/anie.202205784.

6. Shen, J.; Luan, C.; Rowell, N.; Li, Y.; Zhang, M.; Chen, X.; Yu, K. Size Matters: Steric Hindrance of Precursor molecules Controlling the Evolution of CdSe Magic-Size Clusters and Quantum Dots, Nano Res. 2022,15(9), 8564–8572 https://link.springer.com/article/10.1007/s12274-022-4421-4

7. Zhang, Y.; Cao, Z.; Zhang, H.; Luan, C.; Chen, X.; Li, Y.; Yang, Y.; Li, Y.; Zeng, J.; Yu, K. Room-Temperature Evolution of Ternary CdTeS Magic-Size Cluster Exhibiting Sharp Absorption Peaking at 381 nm, J. Phys. Chem. Lett. 2022, 13, 4941–4948.https://doi.org/10.1021/acs.jpclett.2c00884

8. Li, Y.; Zhang, M.; He, L.; Rowell, N.; Kreouzis, T.; Zhang, C.; Wang, S.; Luan, C.; Chen, X.; Zhang, S.; Yu, K. Manipulating Reaction Intermediates to Aqueous-Phase ZnSe Magic-Size Clusters and Quantum Dots at Room Temperature, Angew. Chem. Int. Ed. 2022 https://onlinelibrary.wiley.com/doi/10.1002/anie.202209615

9. He, L.; Luan, C.; Liu, S.; Chen, M.; Rowell, N.; Wang, Z.; Li, Y.; Zhang, C.; Lu, J.; Zhang, M.; Liang, B.; Yu, K. Transformations of Magic-Size Clusters via Precursor Compound Cation Exchange at Room Temperature. J. Am. Chem. Soc. 2022144,19060-19069. https://doi.org/10.1021/jacs.2c07972.


2021

1. Liu, M.; Zhu, Y.; Wang, X.; Jiang, G.; Luan, C.; Yu, K. Absorption Features of CdTe Nanoclusters: Aspect Ratio Dependency of the Singlet/Doublet from First-Principles Calculations. J. Phys. Chem. C 2021, 125, 25660−25669. https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.1c07005.

2. Wang, X.; Zhu, Y.; Liu, M.; Jiang, G.; Hou, G.; Zhang, M.; Yu, K. Effect of One-Coordinated Atoms on the Electronic and Optical Properties of ZnSe Clusters. ACS omega 2021, 6, 1871118718. https://pubs.acs.org/doi/abs/10.1021/acsomega.1c01550.

3. Zhu, Y.; Wang, X.; Liu, M.; Zhang, Y.; Zhang, S.; Jiang, G.; Dove, M.T.; Zhang, M.; Yu, K. DFT Study for the Absorption Spectra Evolution of CdS Magic-Size Clusters. Chem. Phys. Lett. 2021, 779, 138870. https://doi.org/10.1016/j.cplett.2021.138870.

4. Zhu, J.; Cao, Z.; Zhu, Y.; Rowell, N.; Li, Y.; Wang, S.; Zhang, C.; Jiang, G.; Zhang, M.; Zeng, J.; Yu, K. Transformation Pathway from CdSe Magic-Size Clusters with Absorption Doublets at 373/393 nm to Clusters at 434/460 nm. Angew. Chem. Int. Ed. 2021, 60, 2035820365. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202108414.

5. Wang, Z.; Wang, T.; Zhang, C.; Zhang, M.; Chen, X.; Fan, H.; Huang, W.; Luan, C.; Yu, K. Evolution of Two Types of ZnTe Magic-Size Clusters Displaying Sharp Doublets in Optical Absorption. J. Phys. Chem. Lett. 2021, 12, 4762−4768. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.1c00856.

6. He, Z.; Wang, D.; Yu, Q.; Zhang, M.; Wang, S.; Huang, W.; Luan, C.; Yu, K. Evolution of Photoluminescent CdS Magic-Size Clusters Assisted by Adding Small Molecules with Carboxylic Group. ACS Omega 2021, 6, 14458−14466. https://pubs.acs.org/doi/abs/10.1021/acsomega.1c01362.

7. Shen, Q.; Luan, C.; Rowell, N.; Zhang, M.; Wang, K.; Willis, M.; Chen, X.; Yu, K. Reversible Transformations at Room Temperature among Three Types of CdTe Magic-Size Clusters. Inorg. Chem. 2021, 60, 4243−4251. https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.0c03412.

8. He, L.; Luan, C.; Rowell, N.; Zhang, M.; Chen, X.; Yu, K. Transformations Among Colloidal Semiconductor Magic-Size Clusters. Acc. Chem. Res. 2021, 54, 776−786.https://pubs.acs.org/doi/abs/10.1021/acs.accounts.0c00702


2020

1. Xin, G.; Zhang, M.; Zhong, Z.; Tang, L.; Feng, Y.; Wei, Z.; Li, S.; Li, Y.; Zhang, J.; Zhang, B.; Zhang, M.; Rowell, N.; Chen, Z.; Niu, H.; Yu, K.; Huang, W. Ophthalmic Drops with Nanoparticles Derived from a Natural Product for Treating Age-Related Macular Degeneration. ACS Appl. Mater. Interfaces 2020, 12, 57710–57720. https://pubs.acs.org/doi/abs/10.1021/acsami.0c17296.

2. Wan, W.; Zhang, M.; Zhao, M.; Rowell, N.; Zhang, C.; Wang, S.; Kreouzis, T.; Fan, H.; Huang, W.; Yu, K. Room-Temperature Formation of CdS Magic-Size Clusters in Aqueous Solutions Assisted by Primary Amines. Nat. Commun. 2020, 11, 4199. https://doi.org/10.1038/s41467-020-18014-6.

3. Zhang, H.; Luan, C.; Gao, D.; Zhang, M.; Rowell, N.; Willis, M.; Chen, M.; Zeng, J.; Fan, H.; Huang, W.; Chen, X.; Yu, K. A Room-Temperature Formation Pathway for CdTeSe Alloy Magic-Size Clusters. Angew. Chem. Int. Ed. 2020, 59, 16943−16952.https://doi.org/10.1002/anie.202005643

4. Li, L.; Zhang, J.; Zhang, M.; Rowell, N.; Zhang, C.; Wang, S.; Lu, J.; Fan, H.; Huang, W.; Chen, X.; Yu, K. Fragmentation of Magic-Size Cluster Precursor Compounds into Ultrasmall CdS Quantum Dots with Enhanced Particle Yield at Low Temperatures. Angew. Chem. Int. Ed. 2020, 59, 12013−12021. https://doi.org/10.1002/anie.202001608.

5. Hui, J.; Jiang, Y.; Gökçinar, Ö. Ö.; Tang, J.; Yu, Q.; Zhang, M.; Yu, K. Unveiling the Two-Step Formation Pathway of Cs4PbBr6 Nanocrystals. Chem. Mater. 2020, 32, 4574−4583. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.0c00661.

6. Chen, M.; Luan, C.; Zhang, M.; Rowell, N.; Willis, M.; Zhang, C.; Wang, S.; Zhu, X.; Fan, H.; Huang, W.; Yu, K.; Liang, B. Evolution of CdTe Magic-Size Clusters with Single Absorption Doublet Assisted by Adding Small Molecules during Prenucleation. J. Phys. Chem. Lett. 2020, 11, 2230−2240. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.0c00258.

7. Palencia, C.; Yu, K.; Boldt, K. The Future of Colloidal Semiconductor Magic-Size Clusters. ACS Nano. 2020, 14, 1227−1235. https://pubs.acs.org/doi/abs/10.1021/acsnano.0c00040.

8. Hao, X.; Chen, M.; Wang, L.; Cao, Z.; Li, Y.; Han, S.; Zhang, M.; Yu, K.; Zeng, J. In Situ SAXS Probing the Evolution of the  Precursors and Onset of Nucleation of ZnSe Colloidal Semiconductor Quantum Dots. Chem. Commun. 2020, 56, 2031−2034. https://doi.org/10.1039/C9CC09274A.

9. Riehle, F. S.; Yu, K. Role of Alcohol in the Synthesis of CdS Quantum Dots. Chem. Mater. 2020, 32, 1430−1438. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b04009.

10. Liu, S.; Yu, Q.; Zhang, C.; Zhang, M.; Rowell, N.; Fan, H.; Huang, W.; Chen, X.; Yu, K.; Liang, B. Transformation of ZnS Precursor Compounds to Magic-Size Clusters Exhibiting Optical Absorption Peaking at 269 nm. J. Phys. Chem. Lett. 2020, 11, 75–82. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.9b02999.



2019

1. Li, L.; Zhang, M.; Rowell, N.; Kreouzis, T.; Fan, H.; Yu, Q.; Huang, W.; Chen, X.; Yu, K. Identifying Clusters and/or Small-Size Quantum Dots in Colloidal CdSe Ensembles with Optical Spectroscopy. J. Phys. Chem. Lett. 2019, 10, 6399–6408. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.9b02439.

2. Guo, X.; Gong, Q.; Borowiec, J.; Zhang, S.; Han, S.; Zhang, M.; Willis, M.; Kreouzis, T.; Yu, K. Energetics of Nonradiative Surface Trap States in Nanoparticles Monitored by Time-of-Flight Photoconduction Measurements on Nanoparticle-Polymer Blends. ACS Appl. Mater. Interfaces 2019, 11, 37184–37192. https://pubs.acs.org/doi/abs/10.1021/acsami.9b07852.

3. Luan, C.; Tang, J.; Rowell, N.; Zhang, M.; Huang, W.; Fan, H.; Yu, K. Four Types of CdTe Magic-Size Clusters from One Prenucleation Stage Sample at Room Temperature. J. Phys. Chem. Lett. 2019, 10, 4345–4353. https://pubs.acs.org/doi/abs/10.1021/acsami.9b07852.

4. Liu, Y.; Rowell, N.; Willis, M.; Zhang, M.; Wang, S.; Fan, H.; Huang, W.; Chen, X.; Yu, K. Photoluminescent Colloidal Nanohelices Self-Assembled from CdSe Magic-Size Clusters via Nanoplatelets. J. Phys. Chem. Lett. 2019, 10, 2794–2801. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.9b00838.

5. Zhang, J.; Li, J.; Rowell, N.; Kreouzis, T.; Willis, M.; Fan, H.; Zhang, C.; Huang, W.; Zhang, M.; Yu, K. One-Step Approach to Single-Ensemble CdS Magic-Size Clusters with Enhanced Production Yields. J. Phys. Chem. Lett. 2019, 10, 2725–2732. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.9b01005.

6. Gao, D.; Hao, X.; Rowell, N.; Kreouzis, T.; Lockwood, D. J.; Han, S.; Fan, H.; Zhang, H.; Zhang, C.; Jiang, Y.; Zeng, J.; Zhang, M.; Yu, K. Formation of Colloidal Alloy Semiconductor CdTeSe Magic-Size Clusters at Room Temperature. Nat. Commun. 2019, 10, 1674. https://doi.org/10.1038/s41467-019-09705-w.

7. Tang, J.; Hui, J.; Zhang, M.; Fan, H.; Rowell, N.; Huang, W.; Jiang, Y.; Chen, X.; Yu, K. CdS Magic-Size Clusters Exhibiting One Sharp Ultraviolet Absorption Singlet Peaking at 361 nm. Nano Res. 2019, 12, 14371444. https://doi.org/10.1007/s12274-019-2386-8.


2018

1. Liu, Y.; Willis, M.; Rowell, N.; Luo, W.; Fan, H.; Han, S.; Yu, K. Effect of Small Molecule Additives in the Prenucleation Stage of Semiconductor CdSe Quantum Dots. J. Phys. Chem. Lett. 2018, 9, 63566363. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b03016.

2. Zhao, H.; Wu, C.; Gao, D.; Chen, S.; Zhu, Y.; Sun, J.; Luo, H.; Yu, K.; Fan, H.; Zhang, X. Antitumor Effect by Hydroxyapatite Nanospheres: Activation of Mitochondria-Dependent Apoptosis and Negative Regulation of Phosphatidylinositol-3-Kinase/Protein Kinase B Pathway. ACS Nano 2018, 12, 7838–7854. https://pubs.acs.org/doi/abs/10.1021/acsnano.8b01996.

3. Luan, C.; Gökçinar, Ö. Ö.; Rowell, N.; Kreouzis, T.; Han, S.; Zhang, M.; Fan, H.; Yu, K. Evolution of Two Types of CdTe Magic-Size Clusters from A Single Induction Period Sample. J. Phys. Chem. Lett. 2018, 9, 5288–5295. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b02334.

4. Wang, L.; Hui, J.; Tang, J.; Zhang, B.; Zhu, T.; Rowell, N.; Fan, H.; Han, S.; Yu, K. Precursor Self-Assembly Identified as a General Pathway for Colloidal Semiconductor Magic-Size Clusters. Adv. Sci. 20185, 1800632. https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201800632.

5. Zhang, J.; Hao, X.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H.; Zhang, C.; Hu, C.; Zhang, M.; Yu, K. Individual Pathways in the Formation of Magic-Size Clusters and Conventional Quantum Dots. J. Phys. Chem. Lett. 2018, 9, 3660–3666. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b01520.

6. Zhang, B.; Zhu, T.; Ou, M.; Rowell, N.; Fan, H.; Han, J.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X.; Han, S.; Zeng, J.; Yu, K. Thermally-Induced Reversible Structural Isomerization in Colloidal Semiconductor CdS Magic-Size Clusters. Nat. Commun. 2018, 9, 2499. https://doi.org/10.1038/s41467-018-04842-0.

7. Zhu, D.; Hui, J.; Rowell, N.; Liu, Y.; Chen, Q. Y.; Steegemans, T.; Fan, H.; Zhang, M.; Yu, K. Interpreting the Ultraviolet Absorption in the Spectrum of 415 nm-Bandgap CdSe Magic-Size Clusters. J. Phys. Chem. Lett. 2018, 9, 2818–2824. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b01109.

8. Liu, Y.; Zhang, B.; Fan, H.; Rowell, N.; Willis, M.; Zheng, X.; Che, R.; Han, S.; Yu, K. Colloidal CdSe 0-Dimension Nanocrystals and Their Self-Assembled 2-Dimension Structures. Chem. Mater. 2018, 30, 1575–1584. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.7b04645.


2017

1. Zhu, T.; Zhang, B.; Zhang, J.; Lu, J.; Fan, H.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K. Two-Step Nucleation of CdS Magic-Size Nanocluster MSC-311. Chem. Mater. 2017, 29, 5727–5735. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.7b02014.

2. Liu, M.; Wang, K.; Wang, L.; Han, S.; Fan, H.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F.; Zeng, J.; Yu, K. Probing Intermediates of the Induction Period Prior to Nucleation and Growth of Semiconductor Quantum Dots. Nat. Commun. 2017, 8, 15467. https://doi.org/10.1038/ncomms15467.

3. Jiang, D.; Zhao, H.; Yang, Y.; Zhu, Y.; Chen, X.; Sun, J.; Yu, K.; Fan, H.; Zhang, X. Investigation of luminescent mechanism: N-rich carbon dots as luminescence centers in fluorescent hydroxyapatite prepared using a typical hydrothermal process. J. Mater. Chem. B. 2017, 5, 3749–3757. https://doi.org/10.1039/C6TB03184F.


2016

1. Yu, K.; Liu, X.; Qi, T.; Yang, H.; Whitfield, D. M.; Hu, C. General Low Temperature Reaction Pathway from Precursors to Monomers before Nucleation of Compound Semiconductor Nanocrystals. Nat. Commun. 2016, 7, 12223. https://doi.org/10.1038/ncomms12223.

2. Zhao, Y.; Shi, C.; Yang, X.; Shen, B.; Sun, Y.; Chen, Y.; Xu, X.; Sun, H.; Yu, K.; Yang, B.; Lin, Q. pH- and Temperature-Sensitive Hydrogel Nanoparticles with Dual Photoluminescence for Bioprobes. ACS Nano 2016, 10, 5856–5863. https://pubs.acs.org/doi/abs/10.1021/acsnano.6b00770.

3. Zhang, J.; Yang, Q.; Cao, H.; Ratcliffe, C. I.; Kingston, D.; Chen, Q. Y.; Ouyang, J.; Wu, X.; Leek, D. M.; Riehle, F. S.; Yu, K. Bright Gradient-Alloyed CdSexS1-x Quantum Dots Exhibiting Cyan-Blue Emission. Chem. Mater. 2016, 28, 618–625. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b04380.

4. Qi, T.; Yang, H.; Whitfield, D. M.; Yu, K.; Hu, C. Insights into the Mechanistic Role of Diphenylphosphine Selenide, Diphenylphosphine, and Primary Amines in the Formation of CdSe Monomers. J. Phys. Chem. A 2016, 120, 918–931. https://pubs.acs.org/doi/abs/10.1021/acs.jpca.5b10675.


2015

1. Muller-Buschbaum, M.; Yu, K. Preface to Forum on Polymeric nanostructures: Recent Advances Toward Applications. ACS Appl. Mater. Interfaces 2015, 7, 12287–12288. https://pubs.acs.org/doi/full/10.1021/acsami.5b04607.

2. Yu, K.; Mallett, J. J.; Schanze, K. S. Six Proud Years: Building a Solid Foundation to Advance Applied Materials Science and Interfaces Research. ACS Appl. Mater. Interfaces 2015, 7, 6013–6013. https://pubs.acs.org/doi/full/10.1021/acsami.5b02244.


2014

1. Yu, K.; Liu, X.; Chen, Q. Y.; Yang, H.; Yang, M.; Wang, X.; Wang, X.; Cao, H.; Whitfield, D.M.; Hu, C.; Tao, Y. Mechanistic Study of the Role of Primary Amines in Precursor Conversions to Semiconductor Nanocrystals at Low Temperature. Angew. Chem. Int. Ed. 2014, 53, 6898–6904. https://doi.org/10.1002/anie.201403714