13941
当前位置: 首页   >  成果及论文
成果及论文

2024

1. Zhe Wang, Chunchun Zhang, Shanling Wang, Meng Zhang, Xiaoqin Chen, Chaoran Luan, and Kui Yu, Formation and Transformation of ZnTe and CdTe Magic-Size Clusters Assisted by Their Precursor Compounds. Chem. Mater. 2024, 36 (5), 2520-2532. https://doi.org/10.1021/acs.chemmater.3c03309

2. Rongkuan Xu, Zhe Wang, Yusha Yang, Cheng Gu, Chaoran Luan, Shanling Wang, Xiaoqin Chen, and Kui Yu, Formation and Transformation of CdS Clusters during the Prenucleation Stage and in a Dilute Dispersion at Room Temperature. Nano Lett. 2024, 24, 4, 1294–1302. https://doi.org/10.1021/acs.nanolett.3c04287

3. Zhao, D.; Wang, S.; Xue, J.; Zhang, C.; Wang, S.; Chen, X.; Luan, C.; Yu, K. Formation of ZnSe Magic-size Clusters Displaying Optical Absorption Doublets from Prenucleation Clusters. Nano Res. 2024. https://doi.org/10.1007/s12274-024-6627-0

4. Xue, J.; Wang, S.; Wang, Z.; Luan, C.; Li, Y.; Chen, X.; Yu, K. Pathway of Room-Temperature Formation of CdSeS Magic-Size Clusters from Mixtures of CdSe and CdS Samples. Small 2024, 10.1002/smll.202402121. https://doi.org/10.1002/smll.202402121

5. Xilian Sun, Shasha Wang, Zhe Wang, Qiu Shen, Xiaoqin Chen, Zifei Chen, Chaoran Luan, and Kui Yu, Lower-Temperature Nucleation and Growth of Colloidal CdTe Quantum Dots Enabled by Prenucleation Clusters with Cd−Te Bond Conservation. J. Am. Chem. Soc2024. https://doi.org/10.1021/jacs.4c04593


2023

1. Yang. Y, Shen. Q, Zhang. C, Rowell. N, Zhang. M, Chen. X, Luan. C, Yu. K, Direct and Indirect Pathways of CdTeSe Magic-Size Cluster Isomerization Induced by Surface Ligands at Room Temperature, ACS Cent. Sci. 2023, 9, 3, 519–530. https://doi.org/10.1021/acscentsci.2c01394

2. Wang. D, Liu. Y, Rowell. N, Wang. S, Zhang. C, Zhang. M, Luan. C, Yu. K, Direct and Indirect Evolution of Photoluminescent Semiconductor CdS Magic-Size Clusters through Their Precursor Compounds, Angew Chem Int Ed. 2023, e202304329. https://doi.org/10.1002/anie

3. Zhang. Y, Chen. Q, Chen. S, Wang. S, Zhang. M, Yu. K, Evolution of Aqueous-Phase CdTe Magic-Size Clusters from Their Precursor Compounds, J Phys Chem Lett. 2023,14, 5188-5193. https://doi.org/10.1021/acs.jpclett.3c01137

4. Wang. TWang. ZWang. SChen. XLuan. C, Yu. K, Thermally-Induced Isomerization of Prenucleation Clusters During the Prenucleation Stage of CdTe Quantum Dots, Angew. Chem. Int. Ed2023, 62, e202310234. https://doi.org/10.1002/anie.202310234

5. Qingyuan Chen, Yu Zhang, Shuo Chen, Yuehui Liu, Chunchun Zhang, Meng Zhang, and Kui Yu, Surface-Ligand Tuned Reversible Transformations in Aqueous Environments Between CdSe Magic-Size Clusters and Their Precursor Compounds, Small 2023, 2304277. https://doi.org/10.1002/smll.202304277

6. Shuo Chen, Yu Zhang, Qingyuan Chen, Chunchun Zhang, Meng Zhang, and Kui Y, Precursor Compound-Assisted Formation of CdS Magic-Size Clusters in Aqueous Solutions, Inorg. Chem. 2023, 62, 18290−18298. https://doi.org/10.1021/acs.inorgchem.3c02980


2022

1. Li, Y.; Rowell, N.; Luan, C.; Zhang, M.; Chen, X.; Yu, K. A Two-Pathway Model for the Evolution of Colloidal Compound Semiconductor Quantum Dots and Magic-Size Clusters. Adv. Mater. 2022, e2107940. https://onlinelibrary.wiley.com/doi/10.1002/adma.202107940

2. Yang, Y.; Li, Y.; Luan, C.; Rowell, N.; Wang, S.; Zhang, C.; Huang, W.; Chen, X.; Yu, K. Transformation Pathways in Colloidal CdTeSe Magic-Size Clusters. Angew. Chem. Int. Ed. 2022, 61, e202114551https://onlinelibrary.wiley.com/doi/10.1002/anie.202114551

3. Zhao, M.; Chen, Q.; Zhu, Y.; Liu, Y.; Zhang, C.; Jiang, G.; Zhang, M.; Yu, K. Precursor Compound Enabled Formation of Aqueous-Phase CdSe Magic-Size Clusters at Room Temperature. Nano Res. 2022, 15, 2634-2642. https://doi.org/10.1007/s12274-021-3858-1.

4. Yang, X.; Zhang, M.; Shen, Q.; Li, Y.; Luan, C.; Yu, K. The Precursor Compound of Two Types of ZnSe Magic-Sized Clusters. Nano Res. 2022, 15, 465-474. https://doi.org/10.1007/s12274-021-3503-z

5. Luan, C.; Shen, Q.; Rowell, N.; Zhang, M.; Chen, X.; Huang, W.; Yu, K. A Real-Time In Situ Demonstration of Direct and Indirect Transformation Pathways in CdTe Magic-Size Clusters at Room Temperature, Angew. Chem. Int. Ed. 2022, e202205784. https://doi.org/10.1002/anie.202205784.

6. Shen, J.; Luan, C.; Rowell, N.; Li, Y.; Zhang, M.; Chen, X.; Yu, K. Size Matters: Steric Hindrance of Precursor molecules Controlling the Evolution of CdSe Magic-Size Clusters and Quantum Dots, Nano Res. 2022,15(9), 8564–8572 https://link.springer.com/article/10.1007/s12274-022-4421-4

7. Zhang, Y.; Cao, Z.; Zhang, H.; Luan, C.; Chen, X.; Li, Y.; Yang, Y.; Li, Y.; Zeng, J.; Yu, K. Room-Temperature Evolution of Ternary CdTeS Magic-Size Cluster Exhibiting Sharp Absorption Peaking at 381 nm, J. Phys. Chem. Lett. 2022, 13, 4941–4948.https://doi.org/10.1021/acs.jpclett.2c00884

8. Li, Y.; Zhang, M.; He, L.; Rowell, N,; Kreouzis, T.; Zhang, C.; Wang, S.; Luan, C.; Chen, X.; Zhang, S.; Yu, K. Manipulating Reaction Intermediates to Aqueous-Phase ZnSe Magic-Size Clusters and Quantum Dots at Room Temperature, Angew. Chem. Int. Ed. 2022 https://onlinelibrary.wiley.com/doi/10.1002/anie.202209615

9. He L, Luan C, Liu S, Chen M, Rowell N, Wang Z, Li Y, Zhang C, Lu J, Zhang M, Liang B, Yu K. Transformations of Magic-Size Clusters via Precursor Compound Cation Exchange at Room Temperature. J. Am. Chem. Soc. 2022144(41),19060-19069. https://doi.org/10.1021/jacs.2c07972.


2021

1. Liu, M.; Zhu, Y.; Wang, X.; Jiang, G.; Luan, C.; Yu, K. Absorption Features of CdTe Nanoclusters: Aspect Ratio Dependency of the Singlet/Doublet from First-Principles Calculations. J. Phys. Chem. C 2021, 125, 25660−25669. https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.1c07005.

2. Wang, X.; Zhu, Y.; Liu, M.; Jiang, G.; Hou, G.; Zhang, M.; Yu, K. Effect of One-Coordinated Atoms on the Electronic and Optical Properties of ZnSe Clusters. ACS omega 2021, 6, 18711-18718. https://pubs.acs.org/doi/abs/10.1021/acsomega.1c01550.

3. Zhu, Y.; Wang, X.; Liu, M.; Zhang, Y.; Zhang, S.; Jiang, G.; Dove, M.T.; Zhang, M.; Yu, K. DFT Study for the Absorption Spectra Evolution of CdS Magic-Size Clusters. Chem. Phys. Lett. 2021, 779, 138870. https://doi.org/10.1016/j.cplett.2021.138870.

4. Zhu, J.; Cao, Z.; Zhu, Y.; Rowell, N.; Li, Y.; Wang, S.; Zhang, C.; Jiang, G.; Zhang, M.; Zeng, J.; Yu, K. Transformation Pathway from CdSe Magic-Size Clusters with Absorption Doublets at 373/393 nm to Clusters at 434/460 nm. Angew. Chem. Int. Ed. 2021, 60, 20358-20365. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202108414.

5. Wang, Z.; Wang, T.; Zhang, C.; Zhang, M.; Chen, X.; Fan, H.; Huang, W.; Luan, C.; Yu, K. Evolution of Two Types of ZnTe Magic-Size Clusters Displaying Sharp Doublets in Optical Absorption. J. Phys. Chem. Lett. 2021, 12, 4762−4768. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.1c00856.

6. He, Z.; Wang, D.; Yu, Q.; Zhang, M.; Wang, S.; Huang, W.; Luan, C.; Yu, K. Evolution of Photoluminescent CdS Magic-Size Clusters Assisted by Adding Small Molecules with Carboxylic Group. ACS Omega 2021, 6, 14458−14466. https://pubs.acs.org/doi/abs/10.1021/acsomega.1c01362.

7. Shen, Q.; Luan, C.; Rowell, N.; Zhang, M.; Wang, K.; Willis, M.; Chen, X.; Yu, K. Reversible Transformations at Room Temperature among Three Types of CdTe Magic-Size Clusters. Inorg. Chem. 2021, 60, 4243−4251. https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.0c03412.

8. He, L.; Luan, C.; Rowell, N.; Zhang, M.; Chen, X.; Yu, K. Transformations Among Colloidal Semiconductor Magic-Size Clusters. Acc. Chem. Res. 2021, 54, 776−786.https://pubs.acs.org/doi/abs/10.1021/acs.accounts.0c00702


2020

1. Xin, G.; Zhang, M.; Zhong, Z.; Tang, L.; Feng, Y.; Wei, Z.; Li, S.; Li, Y.; Zhang, J.; Zhang, B.; Zhang, M.; Rowell, N.; Chen, Z.; Niu, H.; Yu, K.; Huang, W. Ophthalmic Drops with Nanoparticles Derived from a Natural Product for Treating Age-Related Macular Degeneration. ACS Appl. Mater. Interfaces 2020, 12, 57710–57720. https://pubs.acs.org/doi/abs/10.1021/acsami.0c17296.

2. Wan, W.; Zhang, M.; Zhao, M.; Rowell, N.; Zhang, C.; Wang, S.; Kreouzis, T.; Fan, H.; Huang, W.; Yu, K. Room-Temperature Formation of CdS Magic-Size Clusters in Aqueous Solutions Assisted by Primary Amines. Nat. Commun. 2020, 11, 4199. https://doi.org/10.1038/s41467-020-18014-6.

3. Zhang, H.; Luan, C.; Gao, D.; Zhang, M.; Rowell, N.; Willis, M.; Chen, M.; Zeng, J.; Fan, H.; Huang, W.; Chen, X.; Yu, K. A Room-Temperature Formation Pathway for CdTeSe Alloy Magic-Size Clusters. Angew. Chem. Int. Ed. 2020, 59, 16943−16952.https://doi.org/10.1002/anie.202005643

4. Li, L.; Zhang, J.; Zhang, M.; Rowell, N.; Zhang, C.; Wang, S.; Lu, J.; Fan, H.; Huang, W.; Chen, X.; Yu, K. Fragmentation of Magic-Size Cluster Precursor Compounds into Ultrasmall CdS Quantum Dots with Enhanced Particle Yield at Low Temperatures. Angew. Chem. Int. Ed. 2020, 59, 12013−12021. https://doi.org/10.1002/anie.202001608.

5. Hui, J.; Jiang, Y.; Gökçinar, Ö. Ö.; Tang, J.; Yu, Q.; Zhang, M.; Yu, K. Unveiling the Two-Step Formation Pathway of Cs4PbBr6 Nanocrystals. Chem. Mater. 2020, 32, 4574−4583. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.0c00661.

6. Chen, M.; Luan, C.; Zhang, M.; Rowell, N.; Willis, M.; Zhang, C.; Wang, S.; Zhu, X.; Fan, H.; Huang, W.; Yu, K.; Liang, B. Evolution of CdTe Magic-Size Clusters with Single Absorption Doublet Assisted by Adding Small Molecules during Prenucleation. J. Phys. Chem. Lett. 2020, 11, 2230−2240. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.0c00258.

7. Palencia, C.; Yu, K.; Boldt, K. The Future of Colloidal Semiconductor Magic-Size Clusters. ACS Nano. 2020, 14, 1227−1235. https://pubs.acs.org/doi/abs/10.1021/acsnano.0c00040.

8. Hao, X.; Chen, M.; Wang, L.; Cao, Z.; Li, Y.; Han, S.; Zhang, M.; Yu, K.; Zeng, J. In Situ SAXS Probing the Evolution of the  Precursors and Onset of Nucleation of ZnSe Colloidal Semiconductor Quantum Dots. Chem. Commun. 2020, 56, 2031−2034. https://doi.org/10.1039/C9CC09274A.

9. Riehle, F. S.; Yu, K. Role of Alcohol in the Synthesis of CdS Quantum Dots. Chem. Mater. 2020, 32, 1430−1438. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b04009.

10. Liu, S.; Yu, Q.; Zhang, C.; Zhang, M.; Rowell, N.; Fan, H.; Huang, W.; Chen, X.; Yu, K.; Liang, B. Transformation of ZnS Precursor Compounds to Magic-Size Clusters Exhibiting Optical Absorption Peaking at 269 nm. J. Phys. Chem. Lett. 2020, 11, 75–82. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.9b02999.



2019

1. Li, L.; Zhang, M.; Rowell, N.; Kreouzis, T.; Fan, H.; Yu, Q.; Huang, W.; Chen, X.; Yu, K. Identifying Clusters and/or Small-Size Quantum Dots in Colloidal CdSe Ensembles with Optical Spectroscopy. J. Phys. Chem. Lett. 2019, 10, 6399–6408. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.9b02439.

2. Guo, X.; Gong, Q.; Borowiec, J.; Zhang, S.; Han, S.; Zhang, M.; Willis, M.; Kreouzis, T.; Yu, K. Energetics of Nonradiative Surface Trap States in Nanoparticles Monitored by Time-of-Flight Photoconduction Measurements on Nanoparticle-Polymer Blends. ACS Appl. Mater. Interfaces 2019, 11, 37184–37192. https://pubs.acs.org/doi/abs/10.1021/acsami.9b07852.

3. Luan, C.; Tang, J.; Rowell, N.; Zhang, M.; Huang, W.; Fan, H.; Yu, K. Four Types of CdTe Magic-Size Clusters from One Prenucleation Stage Sample at Room Temperature. J. Phys. Chem. Lett. 2019, 10, 4345–4353. https://pubs.acs.org/doi/abs/10.1021/acsami.9b07852.

4. Liu, Y.; Rowell, N.; Willis, M.; Zhang, M.; Wang, S.; Fan, H.; Huang, W.; Chen, X.; Yu, K. Photoluminescent Colloidal Nanohelices Self-Assembled from CdSe Magic-Size Clusters via Nanoplatelets. J. Phys. Chem. Lett. 2019, 10, 2794–2801. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.9b00838.

5. Zhang, J.; Li, J.; Rowell, N.; Kreouzis, T.; Willis, M.; Fan, H.; Zhang, C.; Huang, W.; Zhang, M.; Yu, K. One-Step Approach to Single-Ensemble CdS Magic-Size Clusters with Enhanced Production Yields. J. Phys. Chem. Lett. 2019, 10, 2725–2732. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.9b01005.

6. Gao, D.; Hao, X.; Rowell, N.; Kreouzis, T.; Lockwood, D. J.; Han, S.; Fan, H.; Zhang, H.; Zhang, C.; Jiang, Y.; Zeng, J.; Zhang, M.; Yu, K. Formation of Colloidal Alloy Semiconductor CdTeSe Magic-Size Clusters at Room Temperature. Nat. Commun. 2019, 10, 1674. https://doi.org/10.1038/s41467-019-09705-w.

7.Tang, J.; Hui, J.; Zhang, M.; Fan, H.; Rowell, N.; Huang, W.; Jiang, Y.; Chen, X.; Yu, K. CdS Magic-Size Clusters Exhibiting One Sharp Ultraviolet Absorption Singlet Peaking at 361 nm. Nano Res. 2019, 12, 1437-1444. https://doi.org/10.1007/s12274-019-2386-8.


2018

1. Liu, Y.; Willis, M.; Rowell, N.; Luo, W.; Fan, H.; Han, S.; Yu, K. Effect of Small Molecule Additives in the Prenucleation Stage of Semiconductor CdSe Quantum Dots. J. Phys. Chem. Lett. 2018, 9, 6356-6363. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b03016.

2. Zhao, H.; Wu, C.; Gao, D.; Chen, S.; Zhu, Y.; Sun, J.; Luo, H.; Yu, K.; Fan, H.; Zhang, X. Antitumor Effect by Hydroxyapatite Nanospheres: Activation of Mitochondria-Dependent Apoptosis and Negative Regulation of Phosphatidylinositol-3-Kinase/Protein Kinase B Pathway. ACS Nano 2018, 12, 7838–7854. https://pubs.acs.org/doi/abs/10.1021/acsnano.8b01996.

3. Luan, C.; Gökçinar, Ö. Ö.; Rowell, N.; Kreouzis, T.; Han, S.; Zhang, M.; Fan, H.; Yu, K. Evolution of Two Types of CdTe Magic-Size Clusters from A Single Induction Period Sample. J. Phys. Chem. Lett. 2018, 9, 5288–5295. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b02334.

4. Wang, L.; Hui, J.; Tang, J.; Zhang, B.; Zhu, T.; Rowell, N.; Fan, H.; Han, S.; Yu, K. Precursor Self-Assembly Identified as a General Pathway for Colloidal Semiconductor Magic-Size Clusters. Adv. Sci. 20185, 1800632. https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201800632.

5. Zhang, J.; Hao, X.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H.; Zhang, C.; Hu, C.; Zhang, M.; Yu, K. Individual Pathways in the Formation of Magic-Size Clusters and Conventional Quantum Dots. J. Phys. Chem. Lett. 2018, 9, 3660–3666. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b01520.

6. Zhang, B.; Zhu, T.; Ou, M.; Rowell, N.; Fan, H.; Han, J.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X.; Han, S.; Zeng, J.; Yu, K. Thermally-Induced Reversible Structural Isomerization in Colloidal Semiconductor CdS Magic-Size Clusters. Nat. Commun. 2018, 9, 2499. https://doi.org/10.1038/s41467-018-04842-0.

7. Zhu, D.; Hui, J.; Rowell, N.; Liu, Y.; Chen, Q. Y.; Steegemans, T.; Fan, H.; Zhang, M.; Yu, K. Interpreting the Ultraviolet Absorption in the Spectrum of 415 nm-Bandgap CdSe Magic-Size Clusters. J. Phys. Chem. Lett. 2018, 9, 2818–2824. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b01109.

8. Liu, Y.; Zhang, B.; Fan, H.; Rowell, N.; Willis, M.; Zheng, X.; Che, R.; Han, S.; Yu, K. Colloidal CdSe 0-Dimension Nanocrystals and Their Self-Assembled 2-Dimension Structures. Chem. Mater. 2018, 30, 1575–1584. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.7b04645.


2017

1. Zhu, T.; Zhang, B.; Zhang, J.; Lu, J.; Fan, H.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K. Two-Step Nucleation of CdS Magic-Size Nanocluster MSC-311. Chem. Mater. 2017, 29, 5727–5735. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.7b02014.

2. Liu, M.; Wang, K.; Wang, L.; Han, S.; Fan, H.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F.; Zeng, J.; Yu, K. Probing Intermediates of the Induction Period Prior to Nucleation and Growth of Semiconductor Quantum Dots. Nat. Commun. 2017, 8, 15467. https://doi.org/10.1038/ncomms15467.

3. Jiang, D.; Zhao, H.; Yang, Y.; Zhu, Y.; Chen, X.; Sun, J.; Yu, K.; Fan, H.; Zhang, X. Investigation of luminescent mechanism: N-rich carbon dots as luminescence centers in fluorescent hydroxyapatite prepared using a typical hydrothermal process. J. Mater. Chem. B. 2017, 5, 3749–3757. https://doi.org/10.1039/C6TB03184F.


2016

1. Yu, K.; Liu, X.; Qi, T.; Yang, H.; Whitfield, D. M.; Hu, C. General Low Temperature Reaction Pathway from Precursors to Monomers before Nucleation of Compound Semiconductor Nanocrystals. Nat. Commun. 2016, 7, 12223. https://doi.org/10.1038/ncomms12223.

2. Zhao, Y.; Shi, C.; Yang, X.; Shen, B.; Sun, Y.; Chen, Y.; Xu, X.; Sun, H.; Yu, K.; Yang, B.; Lin, Q. pH- and Temperature-Sensitive Hydrogel Nanoparticles with Dual Photoluminescence for Bioprobes. ACS Nano 2016, 10, 5856–5863. https://pubs.acs.org/doi/abs/10.1021/acsnano.6b00770.

3. Zhang, J.; Yang, Q.; Cao, H.; Ratcliffe, C. I.; Kingston, D.; Chen, Q. Y.; Ouyang, J.; Wu, X.; Leek, D. M.; Riehle, F. S.; Yu, K. Bright Gradient-Alloyed CdSexS1-x Quantum Dots Exhibiting Cyan-Blue Emission. Chem. Mater. 2016, 28, 618–625. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b04380.

4. Qi, T.; Yang, H.; Whitfield, D. M.; Yu, K.; Hu, C. Insights into the Mechanistic Role of Diphenylphosphine Selenide, Diphenylphosphine, and Primary Amines in the Formation of CdSe Monomers. J. Phys. Chem. A 2016, 120, 918–931. https://pubs.acs.org/doi/abs/10.1021/acs.jpca.5b10675.


2015

1. Muller-Buschbaum, M.; Yu, K. Preface to Forum on Polymeric nanostructures: Recent Advances Toward Applications. ACS Appl. Mater. Interfaces 2015, 7, 12287–12288. https://pubs.acs.org/doi/full/10.1021/acsami.5b04607.

2. Yu, K.; Mallett, J. J.; Schanze, K. S. Six Proud Years: Building a Solid Foundation to Advance Applied Materials Science and Interfaces Research. ACS Appl. Mater. Interfaces 2015, 7, 6013–6013. https://pubs.acs.org/doi/full/10.1021/acsami.5b02244.


2014

1. Yu, K.; Liu, X.; Chen, Q. Y.; Yang, H.; Yang, M.; Wang, X.; Wang, X.; Cao, H.; Whitfield, D.M.; Hu, C.; Tao, Y. Mechanistic Study of the Role of Primary Amines in Precursor Conversions to Semiconductor Nanocrystals at Low Temperature. Angew. Chem. Int. Ed. 2014, 53, 6898–6904. https://doi.org/10.1002/anie.201403714