1951
当前位置: 首页   >  成果及论文
成果及论文

[1] J. WangT. O'ConnorG. Grest, and T. Ge*, Superstretchable elastomer from cross-linked ring polymers. Physical Review Letters, 128, 237801 (2022).

[2] J. Wang, Y. Yang, M. Yu, G. Hu, Y. Gan*, H. Gao*, and X. Shi*, Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels. Journal of the Mechanics and Physics of Solids, 112, 431-457 (2018).

[3] J. Wang, H. Yao, and X. Shi*, Cooperative entry of nanoparticles into the cell. Journal of the Mechanics and Physics of Solids 73, 151-165 (2014).

[4] J. Wang, P. in 't Veld, M. Robbins, and T. Ge*, Effects of coarse-graining on molecular simulation of craze formation in polymer glass. Macromolecules, 55, 1267-1278 (2022).

[5] J. Wang and T. Ge*, Crazing reveals an entanglement network in glassy ring polymers. Macromolecules, 54, 7500-7511 (2021). 入选2022年1月 Journal Club for Condensed Matter Physics, https://doi.org/10.36471/JCCM_January_2022_03.

[6] J. Wang, T. O'Connor, G. Grest, Y. Zheng, M. Rubinstein, and T. Ge*, Diffusion of thin nanorods in polymer melts. Macromolecules, 54, 7051-7059 (2021).

[7] J. Wang, J. Ding, O. Delaire, and G. Arya*, Atomistic mechanisms underlying non-Arrhenius ion transport in superionic conductor AgCrSe2. ACS Applied Energy Materials, 4, 7157-7167 (2021).

[8] T. Ge*, J. Wang, and M. Robbins. Effects of coarse-graining on molecular simulations of mechanical properties of glassy polymers. Macromolecules, 54, 2277-2287 (2021).

[9] J. Wang, B. Lee, and G. Arya*, Kinetically assembled binary nanoparticle networks. Nanoscale, 12, 5091-5102 (2020).

[10] J. Ding, J. Niedziela, D. Bansal, J. Wang, X. He, A. May, G. Ehlers, D. Abernathy, A. Said, A. Alatas, Y. Ren, G. Arya, and O. Delaire*. Anharmonic lattice dynamics and superionic transition in AgCrSe2. Proceedings of the National Academy of Sciences, 117, 3930-3937 (2020).

[11] M. Yu, L. Xu, F. Tian, Q. Su, N. Zheng, Y. Yang, J. Wang, A. Wang, C. Zhu, S. Guo, X. Zhang, Y. Gan*, X. Shi*, and H. Gao*, Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers. Nature Communications, 9, 2607 (2018).

[12] J. Wang and X. Shi*, Molecular dynamics simulation of diffusion of nanoparticles in mucus. Acta Mechanica Solida Sinica, 30, 241-247 (2017).

[13] M. Yu#, J. Wang#, Y. Yang#, C. Zhu, Q. Su, S. Guo, J. Sun, Y. Gan*, X. Shi*, and H. Gao*, Rotation-facilitated rapid transport of nanorods in mucosal tissues. Nano Letters, 16, 7176-7182 (2016).

[14] J. Sun#, L. Zhang#, J. Wang#, Q. Feng, D. Liu, Q. Yin, D. Xu, Y. Wei, B. Ding, X. Shi*, and X. Jiang*, Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake. Advanced Materials, 27, 1402-1407 (2015).

[15] L. Zhang#, Q. Feng#, J. Wang#, S. Zhang, B. Ding, Y. Wei, M. Dong, J. Ryu, T. Yoon, X. Shi*, J. Sun*, and X. Jiang*, Microfluidic synthesis of hybrid nanoparticles with controlled lipid layers: Understanding flexibility-regulated cell–nanoparticle interaction. ACS Nano, 9, 9912-9921 (2015).

[16] L. Zhang, Q. Feng, J. Wang, J. Sun*, X. Shi, and X. Jiang*, Microfluidic synthesis of rigid nanovesicles for hydrophilic reagents delivery. Angewandte Chemie International Edition, 54, 3952-3956 (2015).

[17] 王九令, 孙佳姝, 施兴华*, 纳米颗粒与细胞的交互作用. 科学通报 60, 1976-1986 (2015).

[18] X. He, Z. Qu*, F. Xu, M. Lin, J. Wang, X. Shi, and T. Lu, Molecular analysis of interactions between dendrimers and asymmetric membranes at different transport stages. Soft Matter, 10, 139-148 (2014).

[19] J. Wang, Y. Wei, X. Shi*, and H. Gao, Cellular entry of graphene nanosheets: the role of thickness, oxidation and surface adsorption. RSC Advances, 3, 15776-15782 (2013).