1734
当前位置: 首页   >  成果及论文
成果及论文

承担多个国家级和北京市的自然科学基金项目,课题组经费充足,已搭建高水平的研究平台。组内多位学生获得国家奖学金、学业一等奖学金等。课题组部分代表性论文如下(2014年及以前文章未列入)

44.L. Liu, J. Lu, Y. Yang, W. Ruettinger, X. Cao, M. Wang, H. Lou, Z. Wang, Y. Liu, X. Tao, L. Li, Y. Wang, H. Li, H. Zhou, C. Wang, Q. Luo, H. Wu, K. Zhang, J.-B. Ma*, X. Cao*, L. Wang*, F.-S. Xiao*, “Dealuminated beta zeolite reverses Ostwald ripening for durable copper nanoparticle catalysts”, Science 2024, 383, 94–101.

43.M. Wang, F.-X. Zhang, Z.-Y. Chen, J.-B. Ma*, “Activation and transformation of methane on boron-doped cobalt oxide cluster cations CoBO2+”, Inorg. Chem. 2024, 63, 1537–1542.

42.Y.-Q. Ding, F.-X. Zhang, Y. Li, J.-B. Ma*, “Manipulating reactivity of lr(CH2)0-2+ cations toward dinitrogen at room temperature: A unique dependence on the organic ligand structures, J. Phys. Chem. A. 2024, 128, 449–455.

41.F.-X. Zhang, Y.-H. Zhang, M. Wang, J.-B. Ma*, “Nitrogen adsorption on Nb2C6H4+ cations: The important role of benzyne (ortho-C6H4)”, Phys. Chem. Chem. Phys. 2024, 26, 3912–3919.

40.Y.-H. Zhang, J.-B. Ma*, “Consecutive reduction of five carbon dioxide molecules by gas-phase niobium carbide cluster anions Nb3C4: Unusual mechanism for enhanced reactivity by the carbon ligands” J. Phys. Chem. A. 2024.https://doi.org/10.1021/acs.jpca.4c00371

39.Y.-Q. Ding, Z.-Y. Chen, F.-X. Zhang, J.-B. Ma*, “Coupling of N2 and O2 in the gas phase to synthesize nitric oxide at room temperature: A zeldovich-like strategy”, J. Phys. Chem. Lett. 2023,14,7597−7602.

38.Y.-Q. Ding, F. Ying, Y. Li, J. Xie, J.-B. Ma*, “Conversion of dinitrogen and oxygen to nitric oxide mediated by triatomic yttrium cations: Reversible N−N bond switching”, Inorg. Chem. 2023, 62, 6102−6108.

37.M.-M. Wang, M. Wang, Z.-W. Ji, X.-M. Huang, H.-B. He, X.-L. Ding*, J.-B. Ma*, “Dinitrogen activation by heteronuclear metal carbide cluster anions Y1-3CoC1,2: An experimental and DFT study”, ChemCatChem 2023, e202300978.

36.Z.-Y. Chen, M. Wang, Y.-Q. Ding, J.-B. Ma*, “Two carbon dioxide molecules consecutively reduced by metal free B2O2 anions”, J. Phys. Chem. A. 2023, 127, 3082−3087.

35.J. Jin, C. Xie, J. Gao, H, Wang, J. Zhang, Y. Zhao*, M. Gao, J.-B. Ma, Z. Wang, J. Guan*, “Elucidating the toluene formation mechanism in the reaction of propargyl radical with 1,3-butadiene”, Phys. Chem. Chem. Phys. 2023, 25, 13136.

34.Y. Li, Y.-Q. Ding, S. Zhou, J.-B. Ma*, “Dinitrogen activation by dihydrogen and quaternary cluster anions AuNbBO: Nb and B mediated N2 activation and Au-assisted nitrogen transfer”, J. Phys. Chem. Lett. 2022,13, 4058−4063.

33.Y.-Q. Ding, Y. Li, F. Ying, M. Wang, J.-B. Ma*, “Room-temperature dinitrogen and carbon dioxide activation to form nitrogen-carbon bonds by quaternary cluster anions: gold-assisted enhancement of reactivity”, J. Phys. Chem. Lett. 2022, 13, 492−497.

32.M. Wang, F.-Y. You, M. Gao, Z.-Y. Chen, L.-Y. Chu, L.-R. Hu*, J. Zhu*, J.-B. Ma*, “Direct conversion of N2 and O2 to nitric oxide at room temperature initiated by double aromaticity in the Y2BO+ Cation”, J. Phys. Chem. Lett. 2022, 13, 10697−10704.

31.Z.-Y. Chen, M. Wang, J.-B. Ma*, “Plasma-assisted coupling reactions of dinitrogen and carbon dioxide mediated by monometallicYB1–4−• anions: Carbon nitrogen bond formation” Chem. Eur. J. 2022, 28, e202201170.

30.L.-Y. Chu, Y.-Q. Ding, M. Wang, J.-B. Ma*, “Plasma-promoted reactions of the heterobimetallic anions CuNb with dinitrogen and subsequent reactions with carbon dioxide: Formation of C–N bonds”, Phys. Chem. Chem. Phys. 2022, 24, 14333.

29.Y.-Q. Ding, Z.-Y. Chen, Z.-Y. Li, X. Cheng, M. Wang, J.-B. Ma*, “Lithium-assisted dinitrogen reduction mediated by Nb2LiNO1−4 cluster anions: Electron donors or structural units”. J. Phys. Chem. A. 2022, 126, 1511–1517.

28.M. Gao, Y.-Q. Ding, J.-B. Ma*, “Experimental and theoretical study of N2 adsorption on hydrogenated Y2C4H and dehydrogenated Y2C4 cluster anions at room temperature”. Int. J. Mol. Sci. 2022, 23, 6976.

27.H. Zhou, X.-F. Yi, Y. Hui, L. Wang*, W. Chen, Y.-C. Qin, M. Wang, J.-B. Ma, X.-F. Chu, Y.-Q. Wang, X. Hong, Z.-F. Chen, X.-J. Meng*, H. Wang, Q.-Y. Zhu, L.-J. Song, A.-M. Zheng*, F.-S. Xiao*, “Isolated boron in zeolite for oxidative dehydrogenation of propane”, Science 2021, 372, 76−80.

26.M. Wang, L.-Y. Chu, Z.-Y. Li, A. M. Messinis, Y.-Q. Ding, L.-R. Hu*, J.-B. Ma*, “Dinitrogen and carbon dioxide activation to form C–N bonds at room temperature: A new mechanism revealed by experimental and theoretical studies”, J. Phys. Chem. Lett. 2021. 12, 3490−3496.

25.M. Wang, H.-Y. Zhou, A. M. Messinis, L.-Y. Chu, Y. Li, J.-B. Ma*, “Nitrogen activation and transformation on monometallic niobium boron oxide cluster anions at room temperature: A dual-site mechanism”, J. Phys. Chem. Lett. 2021, 12, 6313−6319.

24.Y. Li, M. Wang, Y.-Q. Ding, C.-Y. Zhao* and Jia-Bi Ma*, “Consecutive methane activation mediated by single metal boride cluster anions NbB4“, Phys. Chem. Chem. Phys. 2021, 23, 12592.

23.L.-Y. Chu, M. Wang, J.-B. Ma*, “Conversion of carbon dioxide to a novel molecule NCNBO mediated by NbBN2 anions at room temperature”, Phys. Chem. Chem. Phys. 2021, 23, 22613.

22.Wang, C.-Y. Zhao, H.-Y. Zhou, Y. Zhao, Y.-K. Li, and J.-B. Ma*, “The sequential activation of H2 and N2 mediated by the gas-phase Sc3N+ clusters: Formation of amido unit“, J. Chem. Phys. 2021, 154, 054307.

21.H. Wang, H. Zhou, S.-Q. Li, X. Ge, L. Wang*, Z. Jin, C.-T. Wang, J.-B. Ma*, X.-F. Chu, X.-J. Meng, W. Zhang*, and F.-S. Xiao*. “Strong oxide-support interactions accelerate propane selective dehydrogenation by modulating the surface oxygen”, ACS Catal., 2020, 10, 10559−10569.M.

20. M. Wang, H.-Y. Zhou, J.-T. Cui, C.-X. Sun, J.-B. Ma*, “The study on the reaction of gas-phase CrxN ( x  = 2-7) anion clusters with CO2”, Sci. Sin. Chim. 2020, 50, 1169−1176.

19.S.-Q. Li, S.-Y. Lv, H.-Y. Zhou, Y.-Q. Ding, Q.-Y. Liu, J.-B. Ma*, “Oxidation of Isoprene by Titanium Oxide Cluster Cations in the Gas Phase”, Phys. Chem. Chem. Phys., 2020, 22, 27357−27363.

18.H.-Y. Zhou, M. Wang, Y.-Q. Ding, J.-B. Ma*, “Nb2BN2  cluster anions reduce four carbon dioxide molecules: reactivity enhancement by ligands”, Dalton Trans., 2020, 40, 14081−14087.

17. Y. Zhao, J.-T. Cui, M. Wang, D.Y. Valdivielso, A. Fielicke*, L.-R. Hu*, X. Cheng, Q.-Y. Liu, Z.-Y. Li, S.-G. He, J.-B. Ma*, “Dinitrogen fixation and reduction by Ta3N3H0,1 cluster anions at room temperature: Hydrogen-assisted enhancement of reactivity”, J. Am. Chem. Soc. 2019, 141, 12592−12600.

16.M. Wang, C.-X. Sun, J.-T. Cui, Y. Zhang, J.-B. Ma*, “Clean and efficient transformation of CO2 to isocyanic acid: The important role of triatomic cation ScNH+ ”, J. Phys. Chem. A. 2019, 123, 5762-5767. (Cover Article)         

15.M. Wang, C.-X. Sun, Y. Zhao, J.-T. Cui, J.-B. Ma*, “Efficient liberation of ammonia from thermal reaction of ScNH+ cations and water”, J. Phys. Chem. A. 2019, 123, 7576−7581.

14.J.-T. Cui, Y. Zhao, M. Wang, S.-S Wang, J.-B. Ma*, “Thermal benzene activation by 3d transition metal (Sc-Cu) oxide cations”, Chin. Chem. Lett. 2019, 31, 779−782.

13.J.-T. Cui, C.-X. Sun, Y. Zhao, M. Wang, J.-B. Ma*, “Hydrogen- and oxygen-atom transfers in the thermal activation of benzene mediated by Cu2O2+ Cations”, Phys. Chem. Chem. Phys. 2019, 21, 1117−1122.

12.Y. Zhao, J.-T. Cui, J.-C. Hu, J.-B. Ma*, “Reactivities of VO1-4+ toward n-CmH2m+2 (m = 3, 5, 7) as functions of oxygen content and carbon chain length”, Acta Phys. -Chim. Sin. 2019, 35, 531−538.

11.J.-T. Cui, Y. Zhao, J.-C. Hu, J.-B. Ma*, “Direct hydroxylation of benzene to phenol mediated by nanosized vanadium oxide cluster ions at room temperature”, J. Chem. Phys. 2018, 149, 074308.

10.Y. Zhao, J.-C. Hu, J.-T. Cui, L.-L. Xu, J.-B. Ma*, “Fe2O+ cation mediated propane oxidation by dioxygen in the gas phase”, Chem. Eur. J. 2018, 24, 5920−5926.

9.J.-C. Hu, L.-L. Xu, H.-F. Li, D.Y. Valdivielso, A. Fielicke*, S.-G. He, J.-B. Ma*, “Liberation of three dihydrogens from two ethene molecules as mediated by the tantalum nitride anion cluster Ta3N2 at room temperature”, Phys. Chem. Chem. Phys. 2017, 19, 3136−3142.

8.J.-C. Hu, L.-L. Xu, X.-Y. Hou, H.-F. Li, J.-B. Ma*, S.-G. He, “Origin of the different reactivity of the triatomic anions HMoN and ZrNH toward alkane: Compositions of the active orbitals”, J. Phys. Chem. A. 2016, 120, 7786−7791.

7.J.-B. Ma*, L.-L. Xu, Q.-Y. Liu, S.-G. He*, “Activation of methane and ethane as mediated by the triatomic anion HNbN: Electronic structure similarity with a Pt atom”, Angew. Chem. Int. Ed. 2016, 55, 4947−4951.

6.Q.-Y. Liu, J.-B. Ma*, Z.-Y. Li, C.-Y. Zhao, C.-G. Ning, H. Chen*, S.-G. He*, “Activation of methane promoted by adsorption of CO on Mo2C2 Cluster anions”, Angew. Chem. Int. Ed. 2016, 55, 5760−5764.

5.J.-B. Ma*, J.-H. Meng, S.-G. He*, “Methane activation mediated by a series of cerium-vanadium bimetallic oxide cluster cations: Tuning reactivity by doping”, ChemPhysChem 2016, 17, 1112−1118. (Cover Article) 

4.J.-B. Ma*, L.-L. Xu, J.-H. Meng, S.-G. He*, “Dehydrogenation of propylene mediated by CeVO4+: An interesting example for the chemistry of binary Ce-V transition-metal oxide cluster cations”, Int. J. Mass Spectrom. 2016, 401, 39−45.

3.J.-B. Ma*, J.-H. Meng, S.-G. He*, “Gas-phase reaction of CeVO5+ cluster ions with C2H4: Reactivity of cluster bonded peroxides”, Dalton Trans. 2015, 44, 3128−3135.

2.Y. Wang, J.-B. Ma*, Q. Zhou, S.-F Pang, Y.-H. Zhang*, “Hygroscopicity of mixed glycerol/Mg(NO3)2/water droplets affected by the interaction between magnesium ions and glycerol molecules”, J. Phys. Chem. B. 2015, 119, 5558−5566.

1.C. Cai, S. Tan, J.-B. Ma, H.-N. Chen; Y. Wang, J. P. Reid*, Y.-H. Zhang*, “Slow water transport in MgSO4 aerosol droplets at gel-Forming relative humidities”, Phys. Chem. Chem. Phys. 2015, 17, 29753−29763.