2024
67. Wang, J.-W.*; Zhao, F.; Velasco, L.; Sauvan, M.; Moonshiram, D.; Salati, M.; Luo, Z.-M.; He, S.; Jin, T.; Mu, Y.-F.; Ertem, M. Z.; Lian, T.; Llobet, A.* Molecular Catalyst Coordinatively Bonded to Organic Semiconductors for Selective Light-Driven CO2 Reduction in Water. Nat. Commun. 2024, 15, 9779. https://www.nature.com/articles/s41467-024-54026-2
66. Wu, J.-H.; Guo, R.-J.; Wang, J.-W.*; Niu, F.-J.*; Guo, L.-J.*; Ouyang, G.* Simultaneous Production of CO and H2O2 by Paired Electrolysis Coupling CO2 Reduction and Water Oxidation. Chem. Commun. 2024, DOI: 10.1039/d4cc04436c, in press. https://pubs.rsc.org/en/content/articlelanding/2024/cc/d4cc04436c
65. Ma, F.; Lin, H.-W.; Li, Z.; Li, W.-J.; Wang, J.-W.*; Ouyang, G. Electronic Effects in Cobalt Phthalocyanine Catalysts Towards Noble-Metal-Free, Photocatalytic CO2-to-CO Reduction. Molecules 2024, 29, 4994. https://www.mdpi.com/1420-3049/29/21/4994
64. Luo, Z.-M.; Wang, J.-W.; Nicaso, M.; Gil-Sepulcre, M.; Solano, E.; Nikolaou, V.; Benet, J.; Segado, M.; Bo, C.*; Llobet, A*. Supramolecular Anchoring of Fe(III) Molecular Redox Catalysts into Graphitic Surfaces for CO2 Electroreduction. Angew. Chem. Int. Ed., 2024, e202412188. https://onlinelibrary.wiley.com/doi/10.1002/anie.202412188
63. Caliskanyürek, V.; Riabchunova, A.; Kupfer, S.; Ma, F.; Wang, J.-W.*; Karnahl, M.* Exploring the Potential of Al(III) Photosensitizers for Energy Transfer Reactions. Inorg. Chem. 2024, 63, 15829–15840. https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c01922
62. Luo, Z. M.; Wang, J. W.*; Nikolaou, V.*; Garcia‐Padilla, E.; Gil‐Sepulcre, M.; Benet‐Buchholz, J.; Rüdiger, O.; DeBeer, S.; Maseras, F.*; Llobet, A.* Molecular Hybrid Materials for Selective CO2 Electroreduction to Multicarbon Products. Adv. Energy Mater. 2024, 2402070. https://doi.org/10.1002/aenm.202402070
61. Ma, F.; Luo, Z.-M.; Wang, J.-W.*; Ouyang, G.* Highly Efficient, Noble-Metal-Free, Fully Aqueous CO2 Photoreduction Sensitized by a Robust Organic Dye. J. Am. Chem. Soc. 2024, 146, 17773–17783. https://pubs.acs.org/doi/10.1021/jacs.4c03128
60. (Review) Wu, J. H.; Wang, J.-W.*; Aramburu-Trošelj, B. M.; Niu, F. J.*; Guo, L. J.*; Ouyang, G.* Recent Progress on Nickel Phthalocyanine-Based Electrocatalysts for CO2 Reduction. Nanoscale 2024, 16, 11496-11512. https://pubs.rsc.org/en/Content/ArticleLanding/2024/NR/D4NR01269K
59. Wang, J.-W.*; Luo, Z.-M.; Yang, G.; Gil-Sepulcre, M.; Kupfer, S.; Rüdiger, O.; Ouyang, G. Highly Efficient Electrocatalytic CO2 Reduction by a CrIII-Quaterpyridine Complex. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2319288121. https://www.pnas.org/doi/10.1073/pnas.2319288121
58. Zhao, J. S.#; Mu, Y. F.#; Wu, L. Y.; Luo, Z. M.; Velasco, L.; Sauvan, M.; Moonshiram, D.; Wang, J. W.*; Zhang, M.*; Lu, T. B.* Directed Electron Delivery from a Pb-Free Halide Perovskite to a Co(II) Molecular Catalyst Boosts CO2 Photoreduction Coupled with Water Oxidation. Angew. Chem. Int. Ed. 2024, 63, e202401344. https://onlinelibrary.wiley.com/doi/10.1002/anie.202401344
57. Zhang, W.#; Huang, H. H.#; Luo, Z. M.; Ma, F.; Gonell, S.; Ke, Z.*; Tan, L.*; Wang, J. W.* Unveiling the Activity and Mechanism Alterations by Pyrene Decoration on a Co(II) Macrocyclic Catalyst for CO2 Reduction. ChemSusChem 2024, 17, e202301113. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202301113
56. Fu, L. Z.; He, P.; Wang, J. W.; Ma, F.; Liu, C.; Chen, G.; Yi, X. Y.* Mononuclear Indium(III) Photosensitizers for Photo-Dehalogenation and Olefin Reduction. Chem. Commun. 2024, 60, 1595-1598. https://pubs.rsc.org/en/content/articlelanding/2024/cc/d3cc05273g
2023
55. Liu, D.-C.*#; Luo, Z.-M.#; Aramburu-Trošelj, B. M.; Ma, F.; Wang, J.-W.* Cobalt-Based Tripodal Complexes as Molecular Catalysts for Photocatalytic CO2 Reduction. Chem. Commun. 2023, 59, 14626-14635. https://pubs.rsc.org/en/content/articlelanding/2023/CC/D3CC04759H
54. Ma, F.; Luo, Z.-M.; Wang, J.-W.*; Aramburu-Trošelj, B. M.; Ouyang, G. Earth-Abundant-Metal Complexes as Photosensitizers in Molecular Systems for Light-Driven CO2 Reduction. Coord. Chem. Rev. 2024, 500, 215529. https://www.sciencedirect.com/science/article/pii/S0010854523005180
53. Wang, J.-W.*; Zhang, X.; Velasco, L.; Karnahl, M.; Li, Z.; Luo, Z.-M.; Huang, Y.; Yu, J.; Hu, W.; Zhang, X.; Yamauchi, K.; Sakai, K.*; Moonshiram, D.*; Ouyang, G.* Precious-Metal-Free CO2 Photoreduction Boosted by Dynamic Coordinative Interaction between Pyridine-Tethered Cu(I) Sensitizers and a Co(II) Catalyst. JACS Au 2023, 3, 1984-1997. https://pubs.acs.org/doi/10.1021/jacsau.3c00218
52. Zhang, W.#; Song, C.-C.#; Wang, J.-W.; Cai, S.-T.; Gao, M.-Y.; Feng, Y.-X.; Lu, T.-B.* Bidirectional Host-Guest Interactions Promote Selective Photocatalytic CO2 Reduction Coupled with Alcohol Oxidation in Aqueous Solution. Chin. J. Catal. 2023, 52, 176-186. https://www.sciencedirect.com/science/article/abs/pii/S1872206723645097
51. Wang, J.-W.*; Li, Z.; Luo, Z.-M.; Huang, Y.; Ma, F.; Kupfer, S.*; Ouyang, G.* Boosting CO2 Photoreduction by π-π-Induced Preassembly between a Cu(I) Sensitizer and a Pyrene-Appended Co(II) Catalyst. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2221219120. https://www.pnas.org/doi/10.1073/pnas.2221219120
50. Li, Z.; Wang, J.-W.*; Huang, Y.; Ouyang, G.* Enhanced CO2 Photoreduction by Perfluorination of Co(II) Phthalocyanine Catalyst in a Noble-Metal-Free System. Chin. J. Catal. 2023, 49, 160-167. https://www.sciencedirect.com/science/article/abs/pii/S187220672364433X
49. Wang, J.-W.*#; Ma, F. #; Jin, T. #; He, P. #; Luo, Z.-M.; Kupfer, S.*; Li, Z.; Karnahl, M.; Zhao, F.; Xu, Z.; Jin, T.; Lian, T.*; Huang, Y.-L.; Jiang, L.; Fu, L.-Z; Ouyang, G.; Yi, X.-Y.* Homoleptic Al(III) Photosensitizers for Durable CO2 Photoreduction. J. Am. Chem. Soc. 2023, 145, 676-688. https://pubs.acs.org/doi/full/10.1021/jacs.2c11740
48. Huang, Y.; Dai, H.; Moonshiram, D.; Li, Z.; Luo, Z.-M.; Zhang, J.-H.; Yang, W.; Shen, Y.*; Wang, J.-W.*; Ouyang, G*. Impaired Conjugation Boosts CO2 Electroreduction by Ni(II) Macrocyclic Catalysts Immobilized on Carbon Nanotubes. J. Mater. Chem. A 2023, 11, 2969-2978. https://pubs.rsc.org/en/content/articlelanding/2023/ta/d2ta08781b
47. (Review) Li, Z.; Luo, Z. M.; Huang, Y.; Wang, J. W.*; Ouyang, G.* Recent Trends in Degradation Strategies of PFOA/PFOS Substitutes. Chemosphere 2022, 315, 137653. https://www.sciencedirect.com/science/article/abs/pii/S0045653522041467
46. Li, Z.; Huang, H.-H.; Huang, Y.; Huang, J.; Shen, M.; Zheng, J.; Wang, J.-W.*; Ouyang, G.* Highly Efficient Electrochemical Oxidation of Hexafluoropropylene Oxide (HFPO) Homologues at a Boron-Doped Diamond Anode. J. Environ. Chem. Eng. 2023, 11, 109280. https://www.sciencedirect.com/science/article/abs/pii/S2213343723000192
2022
45. Huang, H. H.; Zhang, J. H.; Dai, M.; Liu, L.; Ye, Z.; Liu, J.; Zhong, D. C.; Wang, J. W.; Zhao, C.; Ke, Z.* Dual Electronic Effects Achieving a High-Performance Ni(II) Pincer Catalyst for CO2 Photoreduction in a Noble-Metal-Free System. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2119267119. https://www.pnas.org/doi/10.1073/pnas.2119267119
44. Jiang, B.; Gil-Sepulcre, M.*; Garrido-Barros, P.; Gimbert-Surinach, C.; Wang, J. W.; Garcia-Anton, J.; Nolis, P.; Benet-Buchholz, J.; Romero, N.; Sala, X.*; Llobet, A. Unravelling the Mechanistic Pathway of the Hydrogen Evolution Reaction Driven by a Cobalt Catalyst. Angew. Chem. Int. Ed. 2022, 61, e202209075. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202209075
43. Jameei Moghaddam, N.; Gil-Sepulcre, M.; Wang, J. W.; Benet-Buchholz, J.; Gimbert-Surinach, C.*; Llobet, A.* Interplay between Beta-Diimino and Beta-Diketiminato Ligands in Nickel Complexes Active in the Proton Reduction Reaction. Inorg. Chem. 2022, 61, 16639-16649. https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c02150
42. (Supplementary Cover) Wang, J.-W.#; Huang, H.-H.#; Wang, P.#; Yang, G.; Kupfer, S.; Huang, Y.; Li, Z.; Ke, Z.*; Ouyang, G.* Co-Facial π-π Interaction Expedites Sensitizer-to-Catalyst Electron Transfer for High-Performance CO2 Photoreduction. JACS Au 2022, 2, 1359-1374. https://pubs.acs.org/doi/10.1021/jacsau.2c00073
2021
41. Wang, J.-W.; Jiang, L.; Huang, H.-H.; Han, Z.; Ouyang, G.* Rapid Electron Transfer via Dynamic Coordinative Interaction Boosts Quantum Efficiency for Photocatalytic CO2 Reduction. Nat. Commun., 2021, 12, 4276. https://www.nature.com/articles/s41467-021-24647-y
40. Wang, J.-W.; Gil Sepulcre, M.; Huang, H.-H.; Solano, E.; Mu, Y.-F.; Llobet, A.*; Ouyang, G.* CH-π Interaction Boosts Photocatalytic CO2 Reduction Activity in a Noble-Metal-Free System with a Molecular Cobalt Catalyst Anchored on Carbon Nitride. Cell Reports Phys. Sci. 2021, 2, 100861. https://www.cell.com/cell-reports-physical-science/fulltext/S2666-3864(21)00406-9
39. Wang, J.-W.#; Qiao, L.-Z.#; Nie, H.; Huang, H.-H.; Li, Y.; Yao, S.; Liu, M.; Zhang, Z.-M.*; Kang, Z.; Lu, T.-B. Facile Electron Delivery from Graphene Template to Ultrathin Metal-Organic Layers for Boosting CO2 Photoreduction. Nat. Commun. 2021, 12, 813. https://www.nature.com/articles/s41467-021-21084-9
38. Ye, Y.-X.#; Wen, C.#; Pan, J.; Wang, J.-W.; Tong, Y.-J.; Wei, S.; Ke, Z.; Jiang, L.; Zhu, F.; Zhou, N.; Zhou, M.; Xu, J.; Ouyang, G.* Visible-Light Driven Efficient Overall H2O2 Production on Modified Graphitic Carbon Nitride under Ambient Conditions. Appl. Catal. B-Environ. 2021, 285, 119726. https://www.sciencedirect.com/science/article/abs/pii/S0926337320311437
37. Yang, W.#; Wang, H. J.#; Liu, R. R.#; Wang, J. W.; Zhang, C.; Li, C.; Zhong, D. C.*; Lu, T. B.* Tailoring Crystal Facets of Metal-Organic Layers to Enhance Photocatalytic Activity for CO2 Reduction. Angew. Chem. Int. Ed. 2021, 60, 409-414. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202011068
36. Feng, Y. X.#; Wang, H. J.#; Wang, J. W.; Zhang, W.*; Zhang, M.*; Lu, T. B. Stand-Alone CdS Nanocrystals for Photocatalytic CO2 Reduction with High Efficiency and Selectivity. ACS Appl. Mater. Interfaces 2021, 13, 26573-26580. https://pubs.acs.org/doi/10.1021/acsami.1c03606
35. Liu, D.#; Zhang, M.#; Huang, H.-H.; Feng, Q.; Su, C.; Mo, A.; Wang, J.-W.; Qi, Z.; Zhang, X.*; Jiang, L.*; Chen, Z.* CoII–ZnII Heterometallic Dinuclear Complex with Enhanced Photocatalytic Activity for CO2-to-CO Conversion in a Water-Containing System. ACS Sustainable Chem. Eng. 2021, 9, 9273-9281. https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.1c01708
2020
34. Wang, J. W.#*; Sun, J. K.#; Liu, D. C.; Jiang, L.* Visible‐Light‐Driven CO2 Reduction Catalyzed by a Dinuclear Nickel Complex. Eur. J. Inorg. Chem. 2020, 2020, 4450-4453. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/ejic.202000816
33. Wang, S. S.#; Huang, H. H.#; Liu, M.; Yao, S.; Guo, S.*; Wang, J. W.*; Zhang, Z. M.; Lu, T. B. Encapsulation of Single Iron Sites in a Metal-Porphyrin Framework for High-Performance Photocatalytic CO2 Reduction. Inorg. Chem. 2020, 59, 6301-6307. https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.0c00407
32. Ye, Y. X.; Wen, C.; Wang, J. W.; Pan, J.; Huang, S.; Liang, S.; Zhou, M.; Tong, Q.; Zhu, F.; Xu, J.; Ouyang, G.* Valence-Dependent Catalytic Activities of Iron Terpyridine Complexes for Pollutant Degradation. Chem. Commun. 2020, 56, 5476-5479. https://pubs.rsc.org/en/content/articlelanding/2020/cc/d0cc00824a
2019
31. Wang, J.-W.; Yamauchi, K.; Huang, H.-H.; Sun, J.-K.; Luo, Z.-M.; Zhong, D.-C.*; Lu, T.-B*.; Sakai, K.* A Molecular Cobalt Hydrogen Evolution Catalyst Showing High Activity and Outstanding Tolerance to CO and O2. Angew. Chem., Int. Ed. 2019, 58, 10923-10927. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201904578
30. (Review; ESI highly cited paper) Wang, J.-W.; Liu, W.-J.; Zhong, D.-C.*; Lu, T.-B.* Nickel Complexes as Molecular Catalysts for Water Splitting and CO2 Reduction. Coord. Chem. Rev. 2019, 378, 237-261. https://www.sciencedirect.com/science/article/abs/pii/S0010854517304411
29. Yin, X.; Lu, D.; Wang, J.-W.*; Lu, X.* 2D/2D Heterojunction of Ni-Co-P/Graphdiyne for Optimized Electrocatalytic Overall Water Splitting. ChemCatChem 2019, 11, 5407-5411. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201901173
28. Liu, W.-J.; Wen, Y.-Q.; Wang, J.-W.; Zhong, D.-C.; Tan, J.-B.; Lu, T.-B. Nitrogen- and Iodine-Doped Microporous Carbon Derived from a Hydrogen-Bonded Organic Framework: An Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. J. Mater. Chem. A 2019, 7, 9587-9592. https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta07994c/unauth
2018
27. (ESI highly cited paper) Zhang, F.-S.#; Wang, J.-W.#; Luo, J.; Liu, R.-R.; Zhang, Z.-M.*; He, C.-T.*; Lu, T.-B.* Extraction of Nickel from NiFe-LDH into Ni2P@NiFe Hydroxide as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Chem. Sci. 2018, 9, 1375-1384. https://pubs.rsc.org/en/content/articlelanding/2018/sc/c7sc04569g
26. Luo, Z.-M.#; Wang, J.-W.#; Tan, J.-B.; Zhang, Z.-M.*; Lu, T.-B.* Self-Template Synthesis of Co-Se-S-O Hierarchical Nanotubes as Efficient Electrocatalysts for Oxygen Evolution under Alkaline and Neutral Conditions. ACS Appl. Mater. Interfaces 2018, 10, 8231-8237. https://pubs.acs.org/doi/10.1021/acsami.8b00986
25. Bi, Q.-Q.#; Wang, J.-W.#; Lv, J.-X.; Wang, J.; Zhang, W.*; Lu, T.-B.* Selective Photocatalytic CO2 Reduction in Water by Electrostatic Assembly of CdS Nanocrystals with a Dinuclear Cobalt Catalyst. ACS Catal. 2018, 8, 11815-11821. https://pubs.acs.org/doi/10.1021/acscatal.8b03457
24. Lin, H.#; Wang, J.-W.#; Guo, X.-W.; Yao, S.; Liu, M.; Zhang, Z.-M.*; Lu, T.-B.* Phosphorized Polyoxometalate-Etched Iron-Hydroxide Porous Nanotubes for Efficient Electrocatalytic Oxygen Evolution. J. Mater. Chem. A 2018, 6, 24479-24485. https://pubs.rsc.org/en/content/articlelanding/2018/ta/c8ta09240k
23. Wang, J.-W.; Huang, H.-H.; Sun, J.-K.; Zhong, D.-C.*; Lu, T.-B.* Syngas Production with a Highly-Robust Nickel(II) Homogeneous Electrocatalyst in a Water-Containing System. ACS Catal. 2018, 8, 7612-7620. https://pubs.acs.org/doi/abs/10.1021/acscatal.8b02044
22. (Review) Wang, J.-W.; Zhong, D.-C.*; Lu, T.-B.* Artificial Photosynthesis: Catalytic Water Oxidation and CO2 Reduction by Dinuclear Non-Noble Metal Catalysts. Coord. Chem. Rev. 2018, 377, 225-236. https://www.sciencedirect.com/science/article/abs/pii/S0010854518302789
21. (Front Cover) Wang, J. -W.#; Huang, H. -H#; Sun, J. -K.; Ouyang, T.; Zhong, D. -C.*; Lu, T. -B.* Electrocatalytic and Photocatalytic Reduction of CO2 to CO by Cobalt(II) Tripodal Complexes: Low Overpotentials, High Efficiency and Selectivity. ChemSusChem 2018, 11, 1025-1031. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201702280
20. Liu, D. C.; Wang, H. J.; Wang, J. W.; Zhong, D. C.*; Jiang, L.*; Lu, T. B.* Highly Efficient and Selective Visible-Light Driven CO2-to-CO Conversion by a Co-Based Cryptate in H2O/CH3CN Solution. Chem. Commun. 2018, 54, 11308-11311.
19. Cao, L.-M.#; Huang, H.-H.#; Wang, J.-W.; Zhong, D.-C.*; Lu, T.-B.* The Synergistic Catalysis Effect within a Dinuclear Nickel Complex for Efficient and Selective Electrocatalytic Reduction of CO2 to CO. Green Chem. 2018, 20, 798-803. https://pubs.rsc.org/en/content/articlelanding/2018/gc/c7gc03451b
18. Cao, L.-M.; Wang, J.-W.; Zhong, D.-C.*; Lu, T.-B.* Template-Directed Synthesis of Sulphur Doped NiCoFe Layered Double Hydroxide Porous Nanosheets with Enhanced Electrocatalytic Activity for the Oxygen Evolution Reaction. J. Mater. Chem. A 2018, 6, 3224-3230. https://pubs.rsc.org/en/content/articlelanding/2018/ta/c7ta09734d
17. Tan, J.-B.; Sahoo, P.; Wang, J.-W.; Hu, Y.-W.; Zhang, Z.-M.*; Lu, T.-B.* Highly Efficient Oxygen Evolution Electrocatalysts Prepared by Using Reduction-Engraved Ferrites on Graphene Oxide. Inorg. Chem. Front. 2018, 5, 310-318. https://pubs.rsc.org/en/content/articlelanding/2018/qi/c7qi00681k
16. Liu, D.-C.#; Huang, H.-H.#; Wang, J.-W.; Zhong, D.-C.*; Jiang, L.; Lu, T.-B.* Highly Efficient and Selective Visible-Light Driven CO2-to-CO Conversion by a Co(II) Homogeneous Catalyst in H2O/CH3CN Solution. ChemCatChem 2018, 10, 3435-3440. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201800727
15. Liu, D.-C.#; Wang, H.-J.#; Ouyang, T.; Wang, J.-W.; Jiang, L.; Zhong, D.-C.*; Lu, T.-B.* Conjugation Effect Contributes to the CO2-to-CO Conversion Driven by Visible Light. ACS Appl. Energy Mater. 2018, 1, 2452-2459. https://pubs.acs.org/doi/abs/10.1021/acsaem.8b00673
14. Luo, J.; Wang, J.-W.; Zhang, J.-H.; Lai, S.; Zhong, D.-C.* Hydrogen-Bonded Organic Frameworks: Design, Structures and Potential Applications. CrystEngComm 2018, 20, 5884. https://pubs.rsc.org/en/content/articlelanding/2018/ce/c8ce00655e
13. Ouyang, T.#; Wang, H. J.#; Huang, H. H.; Wang, J. W.; Guo, S.; Liu, W. J.; Zhong, D. C.*; Lu, T. B.* Dinuclear Metal Synergistic Catalysis Boosts Photochemical CO2-to-CO Conversion. Angew. Chem. Int. Ed. 2018, 57, 16480-16485. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201811010
12. Cao, L. M.; Hu, Y. W.; Tang, S. F.; Iljin, A.; Wang, J. W.; Zhang, Z. M.*; Lu, T. B.* Fe-CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Large-Current-Density Oxygen Evolution and Overall Water Splitting. Adv. Sci. 2018, 5, 1800949. https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201800949
2017
11. Wang, J.-W.; Hou, C.; Huang, H.-H.; Liu, W.-J.; Ke, Z.-F.*; Lu, T.-B.* Further Insight into the Electrocatalytic Water Oxidation by Macrocyclic Nickel(II) Complexes: The Influence of Steric Effect on Catalytic Activity. Catal. Sci. Technol. 2017, 7, 5585-5593. https://pubs.rsc.org/en/content/articlelanding/2017/cy/c7cy01527e/unauth
10. Wang, J.; Huang, H.; Lu, T.* Homogeneous Electrocatalytic Water Oxidation by a Rigid Macrocyclic Copper(II) Complex. Chin. J. Chem. 2017, 35, 586-590. https://onlinelibrary.wiley.com/doi/abs/10.1002/cjoc.201600669
9. Huang, H. H.; Wang, J. W.; Sahoo, P.; Zhong, D. C.*; Lu, T. B.* Electrocatalytic Water Oxidation by Cu(II) Ions in a Neutral Borate Buffer Solution. Chem. Commun. 2017, 53, 9324-9327. https://pubs.rsc.org/en/content/articlelanding/2017/cc/c7cc04834c
8. Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.*; Li, G. R.* Bimetal-Organic Framework Derived CoFe2O4/C Porous Hybrid Nanorod Arrays as High-Performance Electrocatalysts for Oxygen Evolution Reaction. Adv. Mater. 2017, 29, 1604437. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201604437
7. Ouyang, T.; Huang, H. H.; Wang, J. W.; Zhong, D. C.*; Lu, T. B.* A Dinuclear Cobalt Cryptate as a Homogeneous Photocatalyst for Highly Selective and Efficient Visible-Light Driven CO2 Reduction to CO in CH3CN/H2O Solution. Angew. Chem. Int. Ed. 2017, 56, 738-743. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201610607
6. Ouyang, T.; Hou, C.; Wang, J. W.; Liu, W. J.; Zhong, D. C.*; Ke, Z. F.*; Lu, T. B.* A Highly Selective and Robust Co(II)-Based Homogeneous Catalyst for Reduction of CO2 to CO in CH3CN/H2O Solution Driven by Visible Light. Inorg. Chem. 2017, 56, 7307-7311. https://pubs.acs.org/doi/10.1021/acs.inorgchem.7b00566
2016
5. Lu, X.-F.#; Liao, P.-Q.#; Wang, J.-W.; Wu, J. X.; Chen, X.-W.; He, C.-T.; Zhang, J.-P.*; Li, G.-R.*; Chen, X.-M. An Alkaline-Stable, Metal Hydroxide Mimicking Metal-Organic Framework for Efficient Electrocatalytic Oxygen Evolution. J. Am. Chem. Soc. 2016, 138, 8336-8339. https://pubs.acs.org/doi/10.1021/jacs.6b03125
4. Wang, J.-W.#; Zhang, X.-Q.#; Huang, H.-H.; Lu, T.-B.* A Nickel(II) Complex as a Homogeneous Electrocatalyst for Water Oxidation at Neutral pH: Dual Role of HPO42- in Catalysis. ChemCatChem 2016, 8, 3287-3293. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201600796
3. Wang, J.-W.; Sahoo, P.; Lu, T.-B.* Reinvestigation of Water Oxidation Catalyzed by a Dinuclear Cobalt Polypyridine Complex: Identification of CoOx as a Real Heterogeneous Catalyst. ACS Catal. 2016, 6, 5062-5068. https://pubs.acs.org/doi/10.1021/acscatal.6b00798
2. Luo, G. Y.; Huang, H. H.; Wang, J. W.; Lu, T. B.* Further Investigation of a Nickel-Based Homogeneous Water Oxidation Catalyst with Two cis Labile Sites. ChemSusChem 2016, 9, 485-491. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201501474
1. Zhang, M.; Huang, Y.-L.; Wang, J.-W.; Lu, T.-B.* A Facile Method for the Synthesis of a Porous Cobalt Oxide-Carbon Hybrid as a Highly Efficient Water Oxidation Catalyst. J. Mater. Chem. A 2016, 4, 1819-1827. https://pubs.rsc.org/en/content/articlelanding/2016/ta/c5ta07813j/unauth