5396
当前位置: 首页   >  成果及论文
成果及论文

[1] B.A. Ji, G.Y. Yi, Z.N. Xia, Q.F. Fu*, et. al. Nanoscale hierarchically micro- and mesoporous metalorganic frameworks for high-resolution and high-efficiency capillary electrochromatographic separation, Analytical Chemistry, 2020, DOI: 10.1021/acs.analchem.0c04074. (SCI, IF=6.785)

[2] Y. Qiu, H.G. Yin, Q.F. Fu*, et. al. Facile, green and energy-efficient preparation of fluorescent carbon dots from processed traditional Chinese medicine and their applications for on-site semi-quantitative visual detection of Cr(VI), Sensors and Actuators B: Chemical, 2020, 324: 128722. (SCI, IF=7.1)

[3] Y.H. Zhang, Y. Qiu, Q.F. Fu*, et. al. Self-exothermic redox reaction-driven green synthesis of fluorescent poly(dopamine) nanoparticles for rapid and visual detection of Fe3+, Dyes and Pigments, 2020, 183: 108692. (SCI, IF=4.613)

[4] G.Y. Yi, J.X. He, Q.F. Fu*, et. al. Solvothermal-assisted in situ rapid growth of octadecylamine functionalize d polydopamine-base d permanent coating as stationary phase for open-tubular capillary electrochromatography, Journal of Chromatography A, 2020, 1628: 461436. (SCI, IF=4.049)

[5] Y.K. Huang, G.Y. Yi, Q.F. Fu*, et. al. In situ one-pot synthesis of polydopamine/ octadecylamine co-deposited coating in capillary for open-tubular capillary electrochromatography, Journal of Chromatography A, 2020, 1610: 460559. (SCI, IF=4.049)

[6] H.G. Yin, Z.N. Xia, Q.F. Fu*, et. al. Carbon source self-heating: ultrafast, energy-efficient and room temperature synthesis of highly fluorescent N, S-codoped carbon dots for quantitative detection of Fe(III) ions in biological samples, Nanoscale Advances, 2020, 2: 1483-1492. (SCI)

[7] M.J. Gao1Q.F. Fu1, D. Gao*, et. al. Facile synthesis of porous covalent organic frameworks for the effective extraction of nitroaromatic compounds from water samples, Analytica Chimica Acta, 2019, 1084: 21-32. (SCI, IF=5.977)

[8] M. Wang1Q.F. Fu1, D. Gao*, et. al. A magnetic and carbon dot based molecularly imprinted composite for fluorometric detection of 2,4,6-trinitrophenol, Microchimica Acta, 2019, 186: 86. (SCI, IF=6.232)

[9] Y.Y. Dong, Y. Qiu, Q.F. Fu*, et. al. Melanin-mimetic multicolor and low-toxicity hair dye, RSC Advances, 2019, 9: 33617-33624. (SCI, IF=3.119)

[10] H.G. Yin, Q.F. Fu*et. al. Redox modulation of polydopamine surface chemistry: a facile strategy to enhance the intrinsic fluorescence of polydopamine nanoparticles for sensitive and selective detection of Fe3+, Nanoscale, 2018, 10: 18064-18073. (SCI, IF=6.97)

[11] Q.F. Fu, Z.N. Xia*, et. al. Escherichia coli adhesive coating as a chiral stationary phase for open tubular capillary electrochromatography enantioseparation, Analytica Chimica Acta, 2017, 969: 63-71. (SCI, IF=5.123)

[12] Q.F. Fu, X.J. Li, Z.N. Xia*, et. al. A facile and versatile approach for controlling electroosmotic flow in capillary electrophoresis via mussel inspired polydopamine/polyethyleneimine co-deposition, Journal of Chromatography A, 2015, 1416: 94-102. (SCI, IF=3.926)

[13] X.J. Li1Q.F. Fu1, Z.N. Xia*, et. al. Layer-by-layer self-assembly of polydopamine/ gold nanoparticle/thiol coating as the stationary phase for open tubular capillary electrochromatography, Analytical Methods, 2015, 7: 8227-8234. (SCI, IF=1.915)

[14] Q.F. Fu, F.Q. Yang, H. Chen, Z.N. Xia*, Enhancement of enantioselectivity in chiral capillary electrophoresis using hydroxypropyl-beta-cyclodextrin as chiral selector under molecular crowding conditions induced by dextran or dextrin, Electrophoresis, 2014, 35: 2938-2945. (SCI, IF=3.161)