19727
当前位置: 首页   >  成果及论文
成果及论文

Total citations: 2,025, H-index: 24 (Data source: Google Scholar, May 2020)

Google Scholar: https://scholar.google.com.au/citations?user=JMmITMYAAAAJ&hl=en

Highlights: 1 in Nature, 2 in Science, 6 in Nat. Catal., 1 in Nat. Mater., 1 in Nat. Energy, 3 in J. Am. Chem. Soc., and 3 in Angew. Chem. Int. Ed.


Peer-review articles

(†equal contribution; *corresponding authorship)

(54) Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density

W. R. Leow†, Y. Lum†, A. Ozden, Y. Wang, D. -H. Nam, B. Chen, J. Wicks, T. Zhuang, F. Li, D. Sinton, E. H. Sargent*, , Science, 2020, 368, 1228-1233.

**Perspective in Science: "Electrification of the chemical industry".

**Highlighted at C&EN News.

(53) Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation

X. Wang†, Z. Wang†, F. P. G. Arquer, C. -T. Dinh, A. Ozden, Y. C. Li, D. -H. Nam, J. Li, Y. -S. Liu, J. Wicks, Z. Chen, M. Chi, B. Chen, Y. Wang, J. Tam, J. Howe, A. Proppe, P. Todorovic, F. Li, T. Zhuang, C. M. Gabardo, A. Krimani, C. McCallum, Y. Lum, M. Luo, Y. Min, A. Xu, C. O’Brien, B. Stephen, B. Sun, A. H. Ip, L. Richter, S. Kelley, D. Sinton, E. H. Sargent*, Nat. Energy, 2020, 5, 478-486.

**"Behind the paper" story at Nature Research Chemistry Community.

**Highlighted at TechXplore, Interesting Engineering.

(52) Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption

Y. Wang†, A. Xu†, Z. Wang†, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D. -H. Nam, C. -S. Tan, Y. Ding, J. Wu, Y. Lum, C. -T. Dinh, D. Sinton, G. Zheng, E. H. Sargent*, J. Am. Chem. Soc., 2020, 142, 5702-5708.

(51) Molecular enhancement of heterogeneous CO2 reduction

D. -H. Nam, P. D. Luna, A. Rosas-Hernández, A. Thevenon, F. Li, T. Agapie, J. C. Peters, O. Shekhah, M. Eddaoudi, Edward H. Sargent*, Nat. Mater., 2020, 19, 266-276.

(50) CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2

F. P. G. Arquer†, C. -T. Dinh†, A. Ozden†, J. Wicks†, C. McCallum, A. R. Kirmani, D. -H. Nam, C. M. Gabardo, A. Seifitokaldani, X. Wang, Y. C. Li, F. Li, J. Edwards, L. J. Richter, S. J. Thorpe, D. Sinton*, E. H. Sargent*, Science, 2020, 367, 661-666.

**Highlighted at UofT News, Chemistry World, Phys.org, AAAS EurekAlert!, LongRoom, Environmental News Network, Nanowerk, 7thSpace, etc.

(49) Efficient methane electrosynthesis enabled by tuning local CO2 availability

X. Wang, A. Xu, F. Li, S.-F. Hung, D.-H. Nam, C. M. Gabardo, Z. Wang, Y. Xu, A. Ozden, A. S. Rasouli, A. H. Ip, D. Sinton, E. H. Sargent*, J. Am. Chem. Soc., 2020, 142, 3525-3531.

(48) Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol

Y. Lum†, J. E. Huang†, Z. Wang, M. Luo, D. -H. Nam, W. R. Leow, B. Chen, J. Wicks, Y. C. Li, Y. Wang, C. -T. Dinh, J. Li, T. Zhuang, F. Li, T. -K. Sham, D. Sinton, E. H. Sargent*, Nat. Catal., 2020, 3, 14-22.

**"Behind the paper" story at Nature Research Chemistry Community

**Highlighted at Nature Catalysis News & Views: Towards the sustainable synthesis of ethylene glycol

(47) Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interface

F. Li†, Y. C. Li†, Z. Wang†, J. Li, D-H Nam, Y. Lum, M. Luo, X. Wang, A. Ozden, S.-F. Hung, B. Chen, Y. Wang, J. Wicks, Y. Xu, Y. Li, C. M. Gabardo, C.-T. Dinh, Y. Wang, T.-T. Zhuang, D. Sinton, E. H. Sargent*, Nat. Catal., 2020, 3, 75-82.

**"Behind the paper" story at Nature Research Chemistry Community

(46) Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis

Y. Wang†, Z. Wang†, C. -T. Dinh†, J. Li†, A. Ozden, M. G. Kibria, A. Seifitokaldani, C. -S. Tan, C. M. Gabardo, M. Luo, H. Zhou, F. Li, Y. Lum, C. McCallum, Y. Xu, M. Liu, A. Proppe, A. Johnston, P. Todorovic, T. -T. Zhuang, D. Sinton, S. O. Kelley, E. H. Sargent*, Nat. Catal., 2020, 3, 98-106.

**"Behind the paper" story at Nature Research Chemistry Community

(45) Two-dimensional electrocatalysts for efficient reduction of CO2

Y. Zhang†, L. Li†, S. -X. Guo, X. Zhang, F. Li, A. Bond, J. Zhang*, ChemSusChem, 2020, 13, 59-77.

**Among top 10% most downloaded papers in the 12 months following online publication in ChemSusChem.

(44) Molecular tuning of CO2-to-ethylene conversion

F. Li†, A. Thevenon†, A. Rosas‐Hernández†, Z. Wang†, Y. Li†, C. M. Gabardo, A. Ozden, C. -T. Dinh, J. Li, Y. Wang, J. P. Edwards, Y. Xu, C. McCallum, L. Tao, Z. -Q. Liang, M. Luo, X. Wang, H. Li, C. P. O’Brien, C. -S. Tan, D. -H. Nam, R. Quintero-Bermudez, T. -T. Zhuang, Y. C. Li, Z. Han, R. D. Britt, D. Sinton, J. C. Peters*, T. Agapie*, E. H. Sargent*, Nature, 2020, 577, 509-513.

**Highlighted at UofT News, Caltech News, Canadian Light Source News, Phys.org, ACS Chemical & Engineering News, AAAS EurekAlert!, ScienceDaily, Inverse, Long Room, CTV News, etc.

**Prof. Sargent’s interview at the Naked Scientists: “Turning carbon dioxide into ethylene”

**Prof. Sargent’s interview at CTV: Your Morning: “U of T researchers have found a way to transform human waste into renewable energy”

**"Behind the paper" story at Nature Research Chemistry Community

**Preview article at Joule: C. Hahn & T. F. Jaramillo, Using Microenvironments to Control Reactivity in CO2 Electrocatalysis, Joule, 2020, 4, 292-294.

(43) Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen

M. Luo†, Y. C. Li†, Z. Wang†, J. Li, F. Li, Y. Lum, D. -H. Nam, B. Chen, J. Wicks, A. Xu, T. Zhuang, W. R. Leow, X. Wang, C. -T. Dinh, Y. Wang, Y. Wang, D. Sinton, E. H. Sargent*, Nat. Commun., 2019, 10, 5814.

**"Top 50 Chemistry and Materials Sciences Articles" in 2019.

(42) Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites

X. Wang†, Z. Wang†, T. -T. Zhuang, C. -T. Dinh, J. Li, D. -H. Nam, F. Li, C. -W. Huang, C. -S. Tan, Z. Chen, M. Chi, C. M. Gabardo, A. Seifitokaldani, P. Todorović, A. Proppe, Y. Pang, A. R. Kirmani, Y. Wang, A. H. Ip, L. J. Richter, B. Scheffel, A. Xu, S. -C. Lo, S. Kelley, D. Sinton, E. H. Sargent*, Nat. Commun., 2019, 10, 5186.

**"Top 50 Chemistry and Materials Sciences Articles" in 2019.

(41) Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction

J. Li†, Z. Wang†, C. McCallum†, Y. Xu, F. Li, Y. Wang, C. Gabardo, C. -T. Dinh, T. -T. Zhuang, L. Wang, J. Y. Howe, Y. Ren, E. H. Sargent*, D. Sinton*, Nat. Catal., 2019, 2, 1124-1131.

(40) Dopant-tuned stabilization of intermediates promotes electrosynthesis of valuable C3 products

T. Zhuang†, D. -H. Nam†, Z. Wang†, H. -H. Li, C. Gabardo, Y. Li, Z. -Q. Liang, J. Li, X. -J. Liu, B. Chen, W. R. Leow, R. Wu, X. Wang, F. Li, Y. Lum, J. Wicks, C. O’Brien, T. Peng, A. Ip, T. -K. Sham, S. -H. Yu, D. Sinton, E. H. Sargent*, Nat. Commun., 2019, 10, 4807.

(39) Electrohydrogenation of carbon dioxide using a ternary Pd/Cu2O–Cu catalyst

J. Li†, S. Guo†, F. Li, F. Li, X. Zhang, J. Ma*, D. R. Macfarlane, A. M. Bond, J. Zhang*, ChemSusChem, 2019, 12, 4471-4479.

(38) Binding site diversity promotes CO2 electroreduction to ethanol

Y. C. Li†, Z. Wang†, T. Yuan, D.-H. Nam, M. Luo, J. Wicks, B. Chen, J. Li, F. Li, F. P. G. Arquer, Y. Wang, C.-T. Dinh, O. Voznyy, D. Sinton, E. H. Sargent*, J. Am. Chem. Soc., 2019, 141, 8584-8591.

(37) Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper

Y. Pang†, J. Li†, C. -S. Tan, P. -L. Hsieh, T. -T. Zhuang, Z. Liang, C. Zou, X. Wang, P. D. Luna, J. P. Edwards, Y. Xu, F. Li, C. -T. Dinh, M. Zhong, L. -J. Chen, E. H. Sargent*, D. Sinton*, Nat. Catal., 2019, 2, 251-258.

(36) Oxomolybdate anchored on copper for electrocatalytic hydrogen production over the entire pH range

X. Zhang, Y. Zhang, F. Li, C. Easton, A. Bond, J. Zhang*, Appl. Catal. B Environ., 2019, 249, 227.

(35) Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide

T. -T Zhuang†, Y. Pang†, Z. -Q. Liang, Y. Li, C. -S. Tan, H. Yuan, J. Li, C. -T. Dinh, P. D. Luna, P. -L. Hsieh, T. Burdyny, H. -H. Li, M. Liu, Y. Wang, F. Li, A. Proppe, A. Johnston, Z. -Y. Wu, Y. -R. Zheng, E. Bladt, A. Ip, H. Tan, L. -J. Chen, S. Bals, J. Hofkens, S. -H. Yu, S. O. Kelley, D. Sinton*, E. H. Sargent*, Nat. Catal., 2018, 1, 946.

**Featured as cover

**Highlighted at Nature Catalysis News & Views: Geometry aids green carbon electrochemistry

(34) Copper adparticle enabled selective electrosynthesis of n-propanol

J. Li†, F. Che†, Y. Pang†, C. Zou†, J. Howe, T. Burdyny, J. P. Edwards, Y. Wang, F. Li, P. D. Luna, C. -T Dinh, T. Zhuang, M. I. Saidaminov, S. Cheng, T. Wu, Z. Finfrock, L. Ma, Z. Xie, Y. Liu, G. Botton, X. Du, J. Guo, T. -K. Sham, E. H. Sargent*, D. Sinton*, Nat. Commun., 2018, 9, 4614.

**"Behind the paper" story at Nature Research Chemistry Community

(33) Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2

Z. -Q. Liang†, T. -T. Zhuang†, A. Seifitokaldani†, J. Li, C. -W. Huang, C. -S. Tan, Y. Li, P. D. Luna, C. T. Dinh, Y. Hu, Q. Xiao, P. -L. Hsieh, Y. Wang, F. Li, R. Quintero-Bermudez, Y. Zhou, P. Chen, Y. Pang, S. -C. Lo, L. -J. Chen, H. Tan, Z. Xu, S. Zhao, D. Sinton, E. H. Sargent*, Nat. Commun., 2018, 9, 3828.

(32) Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO2 reduction performance

Y. Zhang, X. Zhang, Y. Ling, F. Li, A. Bond, J. Zhang*, Angew. Chem. Int. Ed., 2018, 57, 13283-13287

**Highlighted at Monash News

(31) Facile regrowth of Mg-Fe2O3/P-Fe2O3 homojunction photoelectrode for efficient solar water oxidation

F. Li, J. Li, F. Li, L. Gao, X. Long, Y. Hu, C. Wang, S. Wei, J. Jin, J. Ma*, J. Mater. Chem. A, 2018, 6, 13412-13418.

(30) Recent advances in nanoengineering of electrocatalysts for CO2 reduction

F. Li, D. R. MacFarlane*, J. Zhang*, Nanoscale, 2018,10, 6235-6260.

**Featured in the themed collection “Nanoscale Most Popular Articles, 2018”, in which the papers were chosen based on citations, the number of full-text downloads, and the articles presence online through social media or on news outlets.

(29) Stannate derived bimetallic nanoparticles for electrocatalytic CO2 reduction

X. Zhang, F. Li, Y. Zhang, A. M. Bond, J. Zhang*, J. Mater. Chem. A, 2018, 6, 7851-7858.

(28) Electrochemical reduction of CO2 on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity

Y. Zhang, F. Li, X. Zhang, T. Williams, C. Easton, A. M. Bond, J. Zhang*, J. Mater. Chem. A, 2018, 6, 4714-4720.

(27) Polyoxometalate promoted electrocatalytic CO2 reduction at nanostructured silver in dimethylformamide

S. Guo, F. Li, D. R. MacFarlane, J. Zhang*, ACS Appl. Mater. Interfaces, 2018, 10, 12690-12697.

(26) Facile electrochemical co-deposition of metal (Cu, Pd, Pt, Rh) nanoparticles on reduced graphene oxide for electrocatalytic reduction of nitrate/nitrite

C. Sun, F. Li, H. An, Z. Li, A. Bond, J. Zhang*, Electrochim. Acta, 2018, 269, 733-741.

(25) Advanced composite two-dimensional energy materials by simultaneous anodic and cathodic exfoliation

F. Li, M. Xue, X. Zhang, L. Chen, G. P. Knowles, D. R. MacFarlane*, J. Zhang*, Adv. Energy Mater., 2018, 8, 1702794.

(24) Ultra-small Cu nanoparticles embedded in N-doped carbon arrays for electrocatalytic CO2 reduction reaction in dimethylformamide

X. Zhang, Y. Zhang, F. Li, C. D. Easton, A. M. Bond, J. Zhang*, Nano Res., 2018, 11, 3678-3690.

(23) Unlock the electrocatalytic activity of antimony for CO2 reduction by 2D engineering

F. Li, M. Xue, J. Li, X. Ma, L. Chen, X, Zhang, D. R. MacFarlane*, J. Zhang*, Angew. Chem. Int. Ed., 2017, 56, 14718-14722.

**Highlighted at Chemistry in Australia

**Highlighted at X-mol.com (Chinese)

(22) Electrochemical reduction of carbon dioxide in a monoethanolamine capture medium

L. Chen, F. Li, Y. Zhang, C. L. Bentley, M. Horne, A. M. Bond, J. Zhang*, ChemSumChem, 2017, 10, 4109-4118.

(21) Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite: basal vs. edge plane activity

C. Bentley*, M. Kang, F. Maddar, F. Li, M. Walker, J. Zhang, P. Unwin*, Chem. Sci., 2017, 8, 6583-6593.

(20) Direct detection of electron transfer reactions underpinning the tin catalyzed electrochemical reduction of CO2 using Fourier transformed ac voltammetry

Y. Zhang, L. Chen, F. Li, C. Easton, J. Li, A. Bond*, J. Zhang*, ACS Catal., 2017, 7, 4846-4853.

(19) Size-tunable, highly sensitive microelectrode arrays enabled by polymer pen lithography

X. Ma, F. Li, Z. Xie, M. Xue, Z. Zheng, X. Zhang*, Soft Matter, 2017, 13, 3685-3689.

(18) Nitrogen doped carbon derived from biomass for electrocatalytic reduction of CO2 to CO

F. Li, M. Xue, G. P. Knowles, L. Chen, D. R. MacFarlane*, J. Zhang*, Electrochim. Acta, 2017, 245, 561-568.

(17) Electrocatalytic reduction of CO2 with an oxide derived lead nano-coralline electrode in a distillable ionic liquid

L. Chen, F. Li, C. L. Bentley, M. Horne, A. M. Bond, J. Zhang*, ChemElectroChem, 2017, 4, 1402-1410.

(16) Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity

F. Li, L. Chen, G. P. Knowles, D. R. MacFarlane*, J. Zhang*, Angew. Chem. Int. Ed., 2017, 56, 505-509.

**Highlighted at Chemistry in Australia

**‘Highly Cited Paper’ (Web of Science)

(15) Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets

F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang, D. R. MacFarlane*, J. Zhang*, Nano Energy, 2017, 31, 270-277.

(14) High-oriented polypyrrole nanotubes for next-generation gas sensor

M. Xue*, F. Li, D. Chen, Z. Yang, X. Wang, J. Ji, Adv. Mater., 2016, 28, 8265-8270.

(13) Efficient enzymatic oxidation of glucose mediated by ferrocene covalently attached to polyethylenimine stabilized gold nanoparticles

D. Cooray, S. Sandanayake, F. Li, S. J. Langford, A. M. Bond, J. Zhang*, Electroanalysis, 2016, 28, 2728-2736.

(12) Electrochemical reduction of CO2 at metal electrodes in the distillable ionic liquid dimethylammonium dimethylcarbamate

L. Chen, S. Guo, F. Li, C. Bentley, M. Horne, A. M. Bond, J. Zhang*, ChemSusChem, 2016, 9, 1271-1278.

(11) Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide

F. Li, S. Zhao, L. Chen, A. Khan, D. R. MacFarlane*, J. Zhang*, Energy Environ. Sci., 2016, 9, 216-223.

**Highlighted at Phys.org

**Highlighted at Chemistry in Australia

**Highlighted at Monash News

(10) Stretchable supercapacitor with adjustable volumetric capacitance based on 3D interdigital electrodes

F. Li, J. Chen, X. Wang, M. Xue*, G. F. Chen, Adv. Funct. Mater., 2015, 25, 4601-4606.

**Featured as Inside Front Cover

(9) Gradual-order enhanced stability: a frozen section of electrospun nanofibers for energy storage

X. Ma, M. Xue*, F. Li, J. Chen, D. Chen, X. Wang, F. Pan, G. F. Chen, Nanoscale, 2015, 7, 8715-8719.

(8) Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production

H. Lei†, A. Han†, F. Li, M. Zhang, Y. Han, P. Du*, W. Lai*, R. Cao*, Phys. Chem. Chem. Phys., 2014, 16, 1883-1893.

(7) Facile fabrication of regular Au microband electrode arrays for voltammetric detection down to submicromolar level by hydrogel etching

J. He, X. Ma, Y. Zhu, F. Li, X. Tang, X. Zhang*, M. Zhang*, Electrochem. Commun., 2013, 30, 67-70.

(6) Quenching of the electrochemiluminescence of tris (2,2’-bipyridine) ruthenium(II)-Tri-n-propylamine by pristine carbon nanotube and its application to quantitative detection of DNA

X. Tang, D. Zhao, J. He, F. Li, J. Peng, M. Zhang*, Anal. Chem., 2013, 85, 1711-1718.

(5) Ultralow-limit gas detection in nano-dumbbell polymer sensor via electrospinning

M. Xue*, F. Li, Y. Wang, X. Cai, F. Pan, J. Chen*, Nanoscale, 2013, 5, 1803-1805.

(4) Superconductivity above 30 K in alkali-metal-doped hydrocarbon

M. Xue, T. Cao*, D. Wang, Y. Wu, H. Yang, X. Dong, J. He, F. Li, G. F. Chen*, Sci. Rep., 2012, 2, 389-392.

(3) Structure-based enhanced capacitance: in situ growth of highly ordered polyaniline nanorods on reduced graphene oxide patterns

M. Xue, F. Li, J. Zhu, H. Song, M. Zhang, T. Cao*, Adv. Funct. Mater., 2012, 22, 1284-1290.

**‘Highly Cited Paper’ (Web of Science)

(2) Fabrication of ultra-fine nanostructures using edge transfer printing

M. Xue†, F. Li†, T. Cao*, Nanoscale, 2012, 4, 1939-1947.

(1) Facile patterning of reduced graphene oxide film into microelectrode array for highly sensitive sensing

F. Li, M. Xue, X. Ma, T. Cao*, M. Zhang*, Anal. Chem., 2011, 83, 6426-6430.

Book chapters

(2) Electrocatalytic Reduction of CO2 in Ionic Liquid-based Electrolytes

F. Li, J. Zhang* in Encyclopedia of Ionic Liquids – Ionic Liquids in Green Chemistry, Springer, Singapore, 2019, DOI: 10.1007/978-981-10-6739-6_85-1.

(1) Two‐Dimensional Transition Metal Dichalcogenides for Electrocatalytic Energy Conversion Applications

F. Li, M. Xue* in Two-dimensional Materials – Synthesis, Characterization and Potential Applications, IntechOpen, 2016, DOI: 10.5772/63947.