Publications
Peer-reviewed Manuscripts
1. Zhang, K.; Zhu, X.; Jia, F.; Auyeung, E.; Mirkin, C. A. Temperature-Activated Nucleic Acid Nanostructures. J. Am. Chem. Soc. 2013, 135 (38), 14102–14105.
2. Lu, X.; Watts, E.; Jia, F.; Tan, X.; Zhang, K. Polycondensation of Polymer Brushes via DNA Hybridization. J. Am. Chem. Soc. 2014, 136 (29), 10214–10217.
3. Jia, F.; Lu, X.; Tan, X.; Zhang, K. Facile Synthesis of Nucleic Acid–polymer Amphiphiles and Their Self-Assembly. Chem. Commun. 2015, 51 (37), 7843–7846
4. Tan, X.; Li, B. B.; Lu, X.; Jia, F.; Santori, C.; Menon, P.; Li, H.; Zhang, B.; Zhao, J. J.; Zhang, K. Light-Triggered, Self-Immolative Nucleic Acid-Drug Nanostructures. J. Am. Chem. Soc. 2015, 137 (19), 6112–6115.
5. Lu, X.; Tran, T.-H.; Jia, F.; Tan, X.; Davis, S.; Krishnan, S.; Amiji, M. M.; Zhang, K. Providing Oligonucleotides with Steric Selectivity by Brush-Polymer-Assisted Compaction. J. Am. Chem. Soc. 2015, 137 (39), 12466–12469.
6. Lu, X.; Jia, F.; Tan, X.; Wang, D.; Cao, X.; Zheng, J.; Zhang, K. Effective Antisense Gene Regulation via Noncationic, Polyethylene Glycol Brushes. J. Am. Chem. Soc. 2016, 138 (29), 9097–9100.
7. Tan, X.; Lu, X.; Jia, F.; Liu, X.; Sun, Y.; Logan, J. K.; Zhang, K. Blurring the Role of Oligonucleotides: Spherical Nucleic Acids as a Drug Delivery Vehicle. J. Am. Chem. Soc. 2016, 138 (34), 10834–10837.
8. Jia, F.; Lu, X.; Tan, X.; Wang, D.; Cao, X.; Zhang, K. Effect of PEG Architecture on the Hybridization Thermodynamics and Protein Accessibility of PEGylated Oligonucleotides. Angew. Chem. 2017, 129 (5), 1259–1263.
9. Cao, X.; Lu, X.; Wang, D.; Jia, F.; Tan, X.; Corley, M.; Chen, X.; Zhang, K. Modulating the Cellular Immune Response of Oligonucleotides by Brush Polymer-Assisted Compaction. Small. 2017, 13 (43), doi: 10.1002/smll.201701432.
10. Jia, F.; Lu, X.; Wang, D.; Cao, X.; Tan, X.; Lu, H.; Zhang, K. Depth-Profiling the Nuclease Stability and the Gene Silencing Efficacy of Brush-Architectured Poly(ethylene glycol)–DNA Conjugates. J. Am. Chem. Soc. 2017, 139 (31), 10605–10608.
11. Wang, D.; Lu, X.; Jia, F.; Tan, X.; Sun, X.; Cao, X.; Wai, F.; Zhang, C.; Zhang, K. Precision Tuning of DNA- and Poly(ethylene Glycol)-Based Nanoparticles via Coassembly for Effective Antisense Gene Regulation. Chem. Mater. 2017, 29 (23), 9882–9886.
12. Li, H.; Zhang, B.; Lu, X.; Tan, X.; Jia, F.; Xiao, Y.; Cheng, Z.; Li, Y.; Silva, D. O.; Schrekker, H. S.; et al. Molecular Spherical Nucleic Acids. Proc. Natl. Acad. Sci. 2018, 115 (17), 4340–4344.
13. Jia, F.; Wang, D.; Lu, X.; Tan, X.; Wang, Y.; Lu, H.; Zhang, K., Improving the Enzymatic Stability and the Pharmacokinetics of Oligonucleotides via DNA-Backboned Bottlebrush Polymers. Nano Lett. 2018, 18, 11, 7378-7382
14. Wang, D.; Lin, J.; Jia, F.; Tan, X.; Wang, Y.; Sun, X.; Cao, X.; Che, F.; Lu, H.; Gao, X.; Shimkonis, J.; Nyoni, Z.; Lu, X.; Zhang, K. Bottlebrush-architectured Poly(ethylene Glycol) as an Efficient Vector for RNA Interference in Vivo. Sci. Adv. 2019; 5, eaav9322
15. Jia, F.; Li, H.; Chen, R.; Zhang, K. Self-assembly of DNA-containing copolymers. Bioconjugate Chem. 2019, 30, 1880-1888
16. Tan, X.; Lu, H.; Sun, Y.; Chen, X.; Wang, D.; Jia, F.; Zhang, K. Expanding the materials space of DNA via organic-phase ring-opening metathesis (co)polymerization. Chem. 2019, 5, 1584–159
17. Tan, X.; Jia, F.; Wang, P.; Zhang, K. Nucleic Acid-Based Drug Delivery Strategies. J. Control. Release., 2020, doi:10.1016/j.jconrel.2020.03.040. (co-first author)
18. Wang, X.; Yang, Y.; Shi, Y.; Jia, F. Editorial: Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Front. Chem. 2020, 8. doi:10.3389/fchem.2020.00245.
19. Lu, X.; Fu, H.; Shih, K.; Jia, F.; Sun, Y.; Wang, D.; Wang, Yu.; Ekatan, S.; Nieh, M.; Lin, Y.; Zhang, K. DNA-mediated Step-growth Polymerization of Bottlebrush Macromonomers. J. Am. Chem. Soc. 2020, 142, 2 3, 10297-10301.
20. Wang, Y.; Wang, D.; Jia, F.; Miller, A.; Tan, X.; Chen, P.; Zhang, L.; Lu, H.; Fang, Y.; Kang, X.; Cai, J.; Ren, M.; Zhang, K. Self-Assembled DNA−PEG Bottlebrushes Enhance Antisense Activity and Pharmacokinetics of Oligonucleotides. ACS Appl. Mater. Interfaces 2020, 12, 45830−45837.
21. Fang, Y.; Lu, X.; Wang, D.; Cai, J.; Wang, Y.; Chen, P.; Ren, M.; Lu, H.; Union, J.; Zhang, L.; Sun, Y.; Jia, F.; Kang, X.; Tan, X.; Zhang, K. Spherical Nucleic Acids for Topical Treatment of Hyperpigmentation. J. Am. Chem. Soc. 2021, 143, 23, 1296-1300.
22. Jia, F.; Kubiak, J. M.; Onoda, M.; Wang, Y.; Macfarlane, R. J. Design and Synthesis of Quick Setting Nonswelling Hydrogels via Brush Polymers. Adv. Sci. 2021, 8, 2100968.
23. Jia, F.; Song, J.; Kubiak, J. M.; Onoda, M.; Santos, P. J.; Sano, K.; Holten-Andersen, N.; Zhang, K.; Macfarlane, R. J. Brush Polymers as Nanoscale Building Blocks for Hydrogel Synthesis. Chem. Mater. 2021, 33, 5748–5756.
24. Jia, F.; Wang, D.; Lu, X.; Tan, X.; Wang, Y.; Sun, Y.; Zhang, K. Bottlebrush Polymer-Conjugated Melittin Exhibits Enhanced Anti-Tumor Activity and Better Safety Profile. ACS Appl. Mater. Interfaces 2021, doi:10.1021/acsami.1c14285.
25. Lu, H.; Cai, J.; Fang, Y.; Ren, M.; Tan, X.; Jia, F.; Wang, D.; Zhang, K. Exploring the Structural Diversity of DNA Bottlebrush Polymers Using an Oligonucleotide Macromonomer Approach. Macromolecules 2022, 55, 2235–2242.
26. Onoda, M.; Jia, F.; Takeoka, Y.; Macfarlane, R.J. Controlling the dynamics of elastomer networks with multivalent brush architectures. Soft Mater. 2022, accepted.
27. Targeting oncogenic KRAS with molecular brush-conjugated antisense oligonucleotides. D. Wang, Q. Wang, Y. Wang, P. Chen, X. Lu, F. Jia, Y. Sun, T. Sun, L. Zhang, F. Che, J. He, L. Lian, G. Morano, M. Shen, M. Ren, S. S. Dong, J. J. Zhao, Ke Zhang*. PNAS, 2022, 119, e2113180119.
28. Multivalent Aptamer-Based Lysosome-Targeting Chimeras (LYTACs) Platform for Mono- or Dual-Targeted Proteins Degradation on Cell Surface. Q. Duan, H. Jia, W. Chen, C. Qin, K. Zhang, F. Jia, T. Fu, Y. Wei, M. Fan, Q. Wu, W. Tan. Advanced Science, 2024.
29. C. J. Thrasher$, F. Jia$, D. W. Yee, J. M. Kubiak, Y. Wang, M. S. Lee, M. Onoda, A. J. Hart, and R. J. Macfarlane*, "Rationally Designing the Supramolecular Interfaces of Nanoparticle Superlattices with Multivalent Polymers", J. Am. Chem. Soc. 2024, 146, 11532–11541.
Book Chapters
1. Li, H.; Zhang, B.; Lu, X.; Tan, X.; Jia, F.; Xiao, Y.; Cheng, Z.; Li, Y.; Silva, D. O.; Schrekker, H. S.; et al. Molecular Spherical Nucleic Acids. Spherical Nucleic Acids, 2020, 1669-1686.