[1] He Y Q, Chen M F*, et al. Phase Reconstruction-Assisted Electron-Li+ Reservoirs Enable High-Performance Li-S Battery Operation Across Wide Temperature Range[J]. Advanced Functional Materials. 2024, 2410899.
[2] Liu S, Luo Y, Chen M F*, et al. Synergistic electrochemical catalysis by high-entropy metal phosphide in lithium-sulfur batteries[J]. Journal of colloid and interface science, 2024, 669:126-136.
[3] Zhu K, Luo Y, Chen M F*, et al. N-doped carbon interwoven with carbon nanotubes as an accelerating polysulfide conversion interlayer for High-Performance lithium-sulfur batteries[J]. Materials Letters, 2024, 366:136566-.
[4] Xia W L, Chen Y F, Chen M F*, et al. MoC-MoSe2 Heterostructures as Multifunctional Catalyst Toward Promoting the Stepwise Polysulfide Conversion for Lithium-Sulfur Batteries[J]. Advanced Functional Materials, 2024, 34, 2400262.
[5] Zhang W, Luo Y, Chen M F*, et al.Utilizing 2D layered structure Cu-g-C3N4 electrocatalyst for optimizing polysulfide conversion in wide-temperature Li-S batteries[J]. Chemical Engineering Journal, 2024, 486:150411-.
[6] Luo Y X, Wu B, Chen M F*, Wang X Y*, et al. Two-dimensional VSe2/CNT functional materials boosted polysulfide conversion for high stability lithium-sulfur battery[J]. Materials Letters, 2023, 346:134511.
[7] Dong Y, Zhang D, Shu H B*, Wang X Y*, Chen M F*, et al. Inhibiting polysulfide shuttling with a flexible “skin” for highly stable Lithium-Sulfur batteries[J]. Materials Letters, 2023, 343:134378.
[8] He Y Q, Luo Y X, Wang X Y*, Chen M F*, et al. MoO2/t-C3N4 Heterogeneous Materials with Bidirectional Catalysis for the Rapid Conversion of S Species in Li–S Batteries[J]. ACS Applied Materials & Interfaces, 2023, 15 (39), 45915-45925.
[9] Luo Y X, Wu M, Chen M F*, Wang X Y*, et al. Boosted Polysulfide Conversion by Co, Mn Bimetallic-Modulated Nitrogen–Carbon Material for Advanced Lithium–Sulfur Batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(3):1087-1099.
[10] Luo Y X, Zhang D, Shu H B*, Wang X Y*,Chen M F*, et al. Intergrated morphology engineering and alloying strategy for FeNi@ NC Catalysts: Tackling the polysulfide shuttle in Li-S batteries[J]. Chemical Engineering Journal, 2023, 474:145751.
[11] Zhou X, Huang X L, Chen M F*, Wang X Y*, et al. An advanced SRR catalyst based on hollow polyhedral carbon skeleton modified by Tri-metal (Zn, Co, Fe) for Li-S batteries[J]. Chemical Engineering Journal, 2023, 471:144806.
[12] Zhang D, Duan T F, Shu H B*, Pei Y*, Wang X Y*, Chen M F*, et al. Oxygen Defect‐Rich WO3− x–W3N4 Mott–Schottky Heterojunctions Enabling Bidirectional Catalysis for Sulfur Cathode[J]. Advanced Functional Materials, 2023:2306578.
[13] Zhou X, Chen M F*, Wang X Y*, et al. Improving the Electrochemical Performance of Li-S Batteries via a MnCo2S4-CoS1. 097 Heterostructure with a Hollow Structure and High Catalytic Activity[J]. ACS Applied Energy Materials, 2022, 5(10):13011-13022.
[14] Yu H, Chen M F*, Wang X Y*, et al. 3D cellulose graphene aerogel with self-redox CeO2 as Li2S host for high-performance Li-S battery[J].Energy Technology, 2022.
[15] Liu M, Chen M F*, Wang X Y*, et al. rGO-Encapsulated Co/Ni Dual-Doped FeF3· 0.33 H2O Nanoparticles Enabling a High-Rate and Long-Life Iron (III) Fluoride-Lithium Battery[J]. Chemical Engineering Journal, 2022:138774.
[16] Zhang D, Chen M F*, Wang X Y*, et al. ZnFe2O4-Ni5P4 Mott-Schottky Heterojunctions to Promote Kinetics for Advanced Li-S Batteries[J]. ACS Applied Materials & Interfaces, 2022, 14, 20, 23546–23557.
[17] Zeng P, Chen M F*, Wang X Y*, et al. In-situ synthesis of highly graphitized and Fe/N enriched carbon tubes as catalytic mediums for promoting multi-step conversion of lithium polysulfides, Carbon, 2022, 192, 418-428.
[18] Zhou X, Chen M F*, Wang X Y*, et al. Engineering a TiNb2O7-Based Electrocatalyst on a Flexible Self-Supporting Sulfur Cathode for Promoting Li-S Battery Performance[J]. ACS Applied Materials & Interfaces, 2022, 14, 1, 1157–1168.
[19] Liu M, Chen M F*, Wang X Y*, et al. Unveiling the Role and Mechanism of Nb Doping and In Situ Carbon Coating on Improving Lithium-Ion Storage Characteristics of Rod-Like Morphology FeF3·0.33 H2O[J]. Small, 2021:2105193.
[20] Yu H, Chen M F*, Wang X Y*, et al. Atomically Dispersed and O, N-Coordinated Mn-Based Catalyst for Promoting the Conversion of Polysulfides in Li2S-Based Li–S Battery[J]. ACS Applied Materials & Interfaces, 2021, 13, 54113-54123.
[21] D. Zhang, M. F. Chen*, X. Y. Wang*, et al. ZnFe2O4–Ni5P4 Mott–Schottky Heterojunctions to Promote Kinetics for Advanced Li–S Batteries [J]. ACS Applied Materials & Interfaces, 2022, 14(20): 23546-57.
[22] H. Liu, M. F. Chen*, X. Y. Wang*, et al. Enhancing the electrochemical performances of Li2S-based cathode through conductive interface design and addition of mixed conductive materials[J]. Electrochimica Acta, 2021, 396:139238.
[23] D. Zhang, M. F. Chen*, X. Y. Wang*, et al. A heterogeneous FeP-CoP electrocatalyst for expediting sulfur redox in high-specific-energy lithium-sulfur batteries[J]. Electrochimica Acta, 2021, 397:139275.
[24] D. Zhang, W. H. Huang, M. F. Chen*, et al. Core-Shell Structure S@PPy/CB with High Electroconductibility to Effective Confinement Polysulfide Shuttle Effect for Advanced Lithium-Sulfur Batteries[J]. Energy & Fuels, 2021, 35(12):10181-10189.
[25] D. Zhang, Z. H. Li, M. F. Chen*, et al. Hollow urchin-like Al-doped α-MnO2−X as advanced sulfur host for high-performance lithium-sulfur batteries[J]. Materials Letters, 2021, 285:129135.
[26] M. F. Chen, X. Y. Wang*, H. B. Shu*, et al. Solvothermal Synthesis of Monodisperse Micro-Nanostructure Starfish-Like Porous LiFePO4 as Cathode Material for Lithium-Ion Batteries, Journal of Alloys and Compounds, 2015, 652:213-219.
[27] M. F. Chen, S. X. Jiang, X. Y. Wang*, et al. Suppressing Polysulfide Shuttle Effect by Heteroatom-Doping for High-Performance Lithium-Sulfur Batteries, ACS Sustainable Chemistry & Engineering, 2018, 6(6):7545-7557.
[28] M. F. Chen, S. X. Jiang, X. Y. Wang*, et al. Hierarchical Porous Carbon Modified with Ionic Surfactants as Efficient Sulfur Hosts for the High-Performance Lithium-Sulfur Batteries, Chemical Engineering Journal, 2017, 313:404-414. (高被引论文)
[29] M. F. Chen, Q. Lu, X. Y. Wang*, et al. MnO2 Nanosheets Grown on the Internal/External Surface of N-doped Hollow Porous Carbon Nanospheres as the Sulfur Host of Advanced Lithium-Sulfur Batteries, Chemical Engineering Journal, 2018, 335:831-842. (高被引论文)
[30] M. F. Chen, S. X. Jiang, X. Y. Wang*, et al. Honeycomb-Like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries, ChemSusChem, 2017, 10(8):1803-1812.
[31] M. F. Chen, S. X. Jiang, X. Y. Wang*, et al. The Synergetic Effects of Multifunctional Composite with More Efficient Polysulfide Immobilization and Ultrahigh Sulfur Content in Lithium-Sulfur Batteries, ACS Applied Materials & Interfaces, 2018, 10(16):13562-13572.
[32] M. F. Chen, W. T. Xu, X. Y. Wang*, et al. Multifunctional Heterostructures for Polysulfide Suppression in High-Performance Lithium-Sulfur Cathode, Small, 14(49):1803134.
[33] M. F. Chen, X. Y. Wang*, S. Y. Cai, et al. Enhancing the Performance of Lithium-Sulfur Batteries by Anchoring Polar Polymers on the Surface of Sulfur Host Materials, Journal of Materials Chemistry A, 2016, 4(41):16148-16156.
[34] M. F. Chen, C. Huang, X. Y. Wang*, et al. Perovskite-type La0. 56Li0. 33TiO3 as an effective polysulfide promoter for stable lithium-sulfur batteries in lean electrolyte condition, Journal of Materials Chemistry A, 2019,7, 10293-10302. (热点论文)
[35] M. F. Chen, X. M. Zhao, X. Y. Wang*, et al. Kinetically Elevated Redox Conversion of Polysulfides of Lithium-Sulfur Battery using a Separator Modified with Transition Metals Coordinated g‑C3N4 with Carbon-Conjugated[J]. Chemical Engineering Journal, 2020, 385:123905.
[35] 王先友,陈曼芳等,一种具有多孔星形形貌的锂离子电池正极材料LiFePO4及其制备方法,ZL201510069405.5(授权)
[36] 王先友,陈曼芳等,一种辣椒生物碳硫复合材料及其制备方法和应用,201811074345.6
[37] 陈曼芳,刘思思等,一种高熵MXene-硫复合材料及其制备方法和应用、锂硫电池,CN202410387740.9
[38] 舒洪波、陈曼芳等,一种锂硫电池正极材料及其制备方法、锂硫电池,CN202210683430.2