6757
当前位置: 首页   >  成果及论文
成果及论文

Google Scholar: https://scholar.google.com/citations?user=3JwfhooAAAAJ&hl=en

ResearchGate: https://www.researchgate.net/profile/Lipeng-Chen

(#: 共同一作, †: 通讯作者)

71. Jiaji Zhang, Carlos L. Benavides-Riveros, and Lipeng Chen.  Neural Quantum Propagators for Driven-Dissipative Quantum Dynamics.  submitted to Phys. Rev. Lett. (https://arxiv.org/abs/2410.16091)

70. Sebastian V. Pios, Jiaji Zhang, Maxim Gelin, Hong-Guang Duan, Lipeng Chen†.  Tracking the Electron Density Changes in Excited States-A Computational Study on Pyrazine. J. Phys. Chem. Lett. 15, 10609-10613 (2024). https://doi.org/10.1021/acs.jpclett.4c02503

69. Jiaji Zhang, Lipeng Chen†. Non-markovian neural quantum propagator and its application to the simulation of ultrafast nonlinear spectra. submitted to J. Chem. Phys. (https://arxiv.org/pdf/2408.00222v1)

68. Anna Stepashkina, Fuguang Chen, Lipeng Chen. Effect of microstructure on fatigue properties of hyperelastic materials. submitted to Polymer Composites.  (http://arxiv.org/abs/2407.10410)

67. Sebastian V. Pios, Maxim F. Gelin, Luis Vasquez, Jurgen Hauer, and Lipeng Chen. On-the-Fly Simulation of Two-Dimensional Fluorescence-Excitation Spectra. J. Phys. Chem. Lett, 15, 8728-8735 (2024). https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01842

66. Kewei Sun, Vasquez Luis, Raffaele Borrelli, Lipeng Chen, Yang Zhao, and Maxim F. Gelin Interconnection between polarization-detected and population-detected signals: theoretical results and Ab initio simulation protocol. J. Chem. Theory. Comput, 20, 7560-7573 (2024). https://pubs.acs.org/doi/10.1021/acs.jctc.4c00592

65. Lina Zhang, Sebastian V. Pios, Mikolaj Martyka, Fuchun Ge, Yi-Fan Hou, Yuxinxin Chen, Lipeng Chen, Joanna Jankowska, Mario Barbatti, Pavlo O. Dral. MLatom and Newton-X software ecosystem for surface hopping dynamics in Python with quantum mechanical and machine learning methods. J. Chem. Theory. Comput, 20,  5043-5057 (2024). https://pubs.acs.org/doi/abs/10.1021/acs.jctc.4c00468

64. Yuzhuo Chen, Sebastian V. Pios, Maxim F. Gelin, and Lipeng Chen†. Accelerating molecular spectra simulations with physically informed deep learning model. J. Chem. Theory. Comput, 20, 4703-4710 (2024).  https://pubs.acs.org/doi/10.1021/acs.jctc.4c00173

63. Jiaji Zhang, Carlos L. Benavides-Riverosand Lipeng ChenArtificial-intelligence-based surrogate solution of dissipative quantum dynamics: physics-informed reconstruction of the universal propagator.  J. Phys. Chem. Lett. 15, 3603-3610 (2024).  https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00598

62. Hideaki Takahashi, Raffaele Borrelli, Maxim F. Gelin, and Lipeng Chen. Finite temperature dynamics in a polarized sub-Ohmic heat bath:  a hierarchical equations of motion-tensor train study. J. Chem. Phys. 160, 164106 (2024). https://doi.org/10.1063/5.0202312

61. Sebastian V. Pios, Maxim F. Gelin, Arif Ullah, Pavlo O. Dral, and Lipeng Chen. AI- enhanced on-the-fly simulation of nonlinear time-resolved spectra. J. Phys. Chem. Lett. 15, 2325-2331 (2024). https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00107 

60. Ajay Jha, Pan-Pan Zhang, Vandana Tiwari, Lipeng Chen, Michael Thorwart, R. J. Dwayne Miller, Hong-Guang Duan. Unraveling Quantum Coherences Mediating Primary Charge Transfer Processes in Photosystem II Reaction Center.  Sci. Adv. 10, eadk1312 (2024) https://www.science.org/doi/10.1126/sciadv.adk1312

59. Jianmin Yang, Maxim F. Gelin, Lipeng Chen, Frantisek Sanda, Erling Thyrhaug, Jurgen Hauer. Two-Dimensional Fluorescence Excitation Spectroscopy: A Novel Technique for Monitoring Excited-State Photophysics of Molecular Species with High Time and Frequency Resolution. J. Chem. Phys. 159, 074201 (2023). https://doi.org/10.1063/5.0156297 

58. Yiying Yan, Zhiguo Lu, Lipeng Chen, Hang Zheng. Multiphoton Resonance Band and Bloch-Siegert Shift in a Bichromatically Driven Qubit. Adv. Quantum Technol. 62200191 (2023). https://onlinelibrary.wiley.com/doi/10.1002/qute.202200191

57. Tarun Gera, Lipeng Chen, Alex Eisfeld, Jeffrey R. Reimers, Elliot J. Taffet, Doran I. G. B. Raccah. Simulating optical linear absorption for mesoscale molecular aggregates: an adaptive hierarchy of pure states approach. J. Chem. Phys. 158, 174103 (2023). https://doi.org/10.1063/5.0141882

56. Lipeng Chen, Yiying Yan, Maxim F. Gelin, and Zhiguo Lv. Dynamics of the spin-boson model: the effect of bath initial conditions. J. Chem. Phys. 158, 104109 (2023). https://aip.scitation.org/doi/10.1063/5.0138399

55. Yiting Bai, Wenjun Ni, Kewei Sun, Lipeng Chen, Lin Ma, Yang Zhao, Gagik G. Gurzadyan, and Maxim F. Gelin. Plenty of Room on the Top: Pathways and Spectroscopic Signatures of Singlet Fission from Upper Singlet States. J. Chem. Phys. Lett13, 11086-11094 (2022). https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03053

54. Chenyi Zhang, Minghong Yu, Yiying Yan, Lipeng Chen, Zhiguo Lv, and Yang Zhao. Emission spectral non-Markovianity in qubit-cavity systems with ultrastrong coupling.  J. Chem. Phys. 157, 214116 (2022). https://aip.scitation.org/doi/abs/10.1063/5.0123871 

53. Hong-Guang Duan#, Ajay Jha#Lipeng Chen#, Vandana Tiwari, Richard J. Cogdell, Khuram Ashraf, Valentyn I. Prokhorenko, Michael Thorwart, R. J. Dwayne Miller. Quantum Coherent Energy Transport in the Fenna Matthews-Olson Complex at Low Temperature. 

Proc. Natl. Acad. Sci. U.S.A.119, e2212630119 (2022). https://www.pnas.org/doi/10.1073/pnas.2212630119

52. Maxim F. Gelin #†Lipeng Chen#†, Wolfgang Domcke#†. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved Four-Wave-Mixing and N-Wave-Mixing Signals. Chem. Revhttps://doi.org/10.1021/acs.chemrev.2c00329

51. Lipeng Chen, Doran I. G. Bennett, and Alexander Eisfeld. Calculating non-linear response functions for multi-dimensional electronic spectroscopy using dyadic non-Markovian quantum state diffusion.  J. Chem. Phys157, 114104 (2022).  http://dx.doi.org/10.1063/5.0107925

50. Carlos L. Benavides-Riveros, Lipeng Chen, Christian Schilling, Sebastian Mantilla, Stefano Pittalis. Excitations of Quantum Many-Body Systems via Purified Ensembles: A Unitary-Coupled-Cluster-Based Approach. Phys. Rev. Lett129, 066401 (2022). (Editors’ suggestion), http://dx.doi.org/10.1103/PhysRevLett.129.066401 

49. Lipeng Chen, Doran I. G. Bennett, and Alexander Eisfeld. Simulation of absorption spectra of molecular aggregates: a Hierarchy of Stochastic Pure State approach. J. Chem. Phys156, 124109 (2022), http://dx.doi.org/10.1063/5.0078435  

48. Yang Zhao, Kewei Sun, Lipeng Chen, and Maxim F. Gelin. The hierarchy of Davydov’s Ansätze and its applications. WIREs Comput Mol Sci. 2021;e1589https://doi.org/10.1002/wcms.1589

47. Yiying Yan, Tadele, Ergogo, Zhiguo Lu, Lipeng Chen, Junyan Luo, and Yang Zhao. Lamb shift and the Vaccum Rabi Splitting in a Strongly Dissipative Environment. J. Phys. Chem. Lett12, 9919-9925 (2021), http://dx.doi.org/10.1021/acs.jpclett.1c02791

46. Deping Hu, Jiawei Peng, Lipeng Chen, Maxim F. Gelin, and Zhenggang Lan. Spectral Fingerprint of Excited-State Energy Transfer in Dendrimers through Polarization-Sensitive Transient-Absorption Pump-Probe Signals: On-the-Fly Nonadiabatic Dynamics Simulations. J. Phys. Chem. Lett12, 9710-9719 (2021), http://dx.doi.org/10.1021/acs.jpclett.1c02640

45. Fulu Zheng, Lipeng Chen, Jianbo Gao, and Yang Zhao. Fully Quantum Modeling of Exciton Diffusion in Mesoscale Light Harvesting Systems. Materials,14, 3291 (2021), http://dx.doi.org/10.3390/ma14123291

44. Lipeng Chen, Raffaele Borrelli, Dmitrii V. Shalashilin, Yang Zhao, and Maxim F. Gelin. Simulation of time- and frequency-resolved four-wave-mixing signals at finite temperature: a thermo-field dynamics approach. J. Chem. Theory. Comput17, 4359-4373 (2021), http://dx.doi.org/10.1021/acs.jctc.1c00259

43. Maxim F. Gelin, Raffaele Borrelli, and Lipeng Chen.Hierarchical equations of motion method for momentum system-bath coupling, J. Phys. Chem. B125, 4863-4873 (2021), http://dx.doi.org/10.1021/acs.jpcb.1c02431

42. Maxim F. Gelin, Xiang Huang, Weiwei Xie, Lipeng Chen, Nadja Doslic, and Wolfgang Domcke. Ab initio surface-hopping simulation of femtosecond transient-absorption pump-probe signals of nonadiabatic excited-state dynamics using the doorway-window representation, J. Chem. Theory. Comput17, 2394-2408 (2021), http://dx.doi.org/10.1021/acs.jctc.1c00109

41. Lipeng Chen, Kewei Sun, Dmitrii V. Shalashilin, Maxim F. Gelin, and Yang Zhao. Efficient simulation of time- and frequency-resolved four-wave-mixing signals with a Multiconfigurational Ehrenfest approach, J. Chem. Phys154, 054105 (2021), http://dx.doi.org/10.1063/5.0038824

40. Kewei Sun, Quan Xu, Lipeng Chen, Maxim F. Gelin and Yang Zhao. Temperature effects on singlet fission dynamics mediated by a conical intersection. J. Chem. Phys153, 194106 (2020), http://dx.doi.org/10.1063/5.0031435

39. Wangjun Hu, Kewei Sun, Quan Xu, Lipeng Chen and Yang Zhao. Ultrafast dynamics in rubrene and its spectroscopic manifestation. J. Chem. Phys153, 174105 (2020), http://dx.doi.org/10.1063/5.0023887

38. Kewei Sun, Weiwei Xie, Lipeng Chen, Wolfgang Domcke and Maxim F. Gelin. Multi-faceted spectroscopic mapping of the ultrafast nonadiabatic dynamics near conical intersection: A computational study. J. Chem. Phys153, 174111 (2020), http://dx.doi.org/10.1063/5.0024148

37. Yiying Yan, Lipeng Chen, JunYan Luo and Yang Zhao. Variational approach to time-dependent fluorescence of a driven qubit. Phys. Rev. A102, 023714 (2020), http://dx.doi.org/10.1103/PhysRevA.102.023714

36. Marcel Binz, Lukas Bruder, Lipeng Chen, Maxim F. Gelin, Wolfgang Domcke and Frank Stienkemeier. Effects of high pulse intensity and chirp in two-dimensional electronic spectroscopy of an atomic vapor. Opt. Express,28, 25806-25829 (2020), https://opg.optica.org/oe/fulltext.cfm?uri=oe-28-18-25806&id=434509

35.Diben Wu, Huijie Wu, Yubing Niu, Chao Wang, Zhuan Chen, Yirui Quyang, Shuo Wang, Hongliang Li, Lipeng Chen, and Lianying Zhang. Controllable synthesis of zinc oxide nanoparticles embedded holey reduced graphene oxide nanocomposite as a high-performance anode for lithium-ion batteries. Powder. Technol367, 774-781 (2020), 

34. Lipeng Chen, Maxim F. Gelin, and Dmitrii V. Shalashilin. Dynamics of a one-dimensional Holstein polaron: the multiconfigurational Ehrenfest method. J. Chem. Phys151, 244116 (2019), https://aip.scitation.org/doi/10.1063/1.5132341

33. Lipeng Chen, Maxim F. Gelin, Yang Zhao, and Wolfgang Domcke. Mapping of Wave-Packet Dynamics at Conical Intersections by Time- and Frequency-Resolved Fluorescence Spectroscopy: A Computational Study. J. Phys. Chem. Lett,  10,  5873-5880 (2019),  http://dx.doi.org/10.1021/acs.jpclett.9b02208

32. Kewei Sun, Zhongkai Huang, Maxim F. Gelin, Lipeng Chen, and Yang Zhao. Monitoring of singlet fission via two-dimensional photon-echo and transient-absorption spectroscopy: Simulations by multiple Davydov trial states. J. Chem. Phys151, 114102 (2019), http://dx.doi.org/10.1063/1.5109251

31. Maxim F. Gelin, Lipeng Chen, Raffaele Borrelli, Erling Thyrhang. Generalized Huang-Rhys factors for molecular aggregates.  Chem. Phys528, 110495 (2020),  http://dx.doi.org/10.1016/j.chemphys.2019.110495

30. Lipeng Chen, Maxim F. Gelin, and Wolfgang Domcke. Orientational relaxation of a quantum linear rotor in a dissipative environment: Simulations with the hierarchical equation-of-motion method. J. Chem. Phys151, 034101 (2019), http://dx.doi.org/10.1063/1.5105375

29. Maxim F. Gelin, Elisa Palacino-Gonzalez, Lipeng Chen, and Wolfgang Domcke. Monitoring of nonadiabatic effects in individual chromophores by femtosecond double-pump single-molecule spectroscopy. Molecules, 24, 231 (2019), http://dx.doi.org/10.3390/molecules24020231

28. Lipeng Chen, Maxim F. Gelin, and Wolfgang Domcke. Multimode quantum dynamics with multiple Davydov D2 trial states: Application to a 24-dimensional conical intersection model. J. Chem. Phys150, 024101 (2019), http://dx.doi.org/10.1063/1.5066022

27. Thanh Nhut Do, Lipeng Chen, Andrey K. Belyaev, Howe-Siang Tan, and Maxim F. Gelin, Pulse-shape effects in fifth-order multidimensional optical spectroscopy. Chem. Phys515, 119-128 (2018), http://dx.doi.org/10.1016/j.chemphys.2018.08.038

26. Lipeng Chen, Maxim F. Gelin, and Yang Zhao. Dynamics of the spin-boson model: A comparison of the multiple Davydov D1, D1.5, D2 Ansatze. Chem. Phys515, 108-118 (2018), http://dx.doi.org/10.1016/j.chemphys.2018.08.041

25. Lipeng Chen, Maxim F. Gelin, Wolfgang Domcke, and Yang Zhao. Simulation of Femtosecond Phase-Locked Double-Pump Signals of Individual Light Harvesting Complexes LH2. J. Phys. Chem. Lett,  9, 4488-4494 (2018), http://dx.doi.org/10.1021/acs.jpclett.8b01887

24. Lipeng Chen, Elisa Palacino-Gonzalez, Maxim F. Gelin, and Wolfgang Domcke .Nonperturbative response functions: a tool for the interpretation of four-wave-mixing signals beyond third order. J. Chem. Phys. 147, 234104 (2017), http://dx.doi.org/10.1063/1.5004763

23. Lipeng Chen and Yang Zhao. Finite temperature dynamics of a Holstein polaron: the thermo field dynamics approach. J. Chem. Phys. 147, 214102 (2017), http://dx.doi.org/10.1063/1.5000823

22. Lipeng Chen, Raffeal Borrelli, and Yang Zhao. Dynamics of coupled electron-boson systems with the multiple Davydov D1 Ansatz and the generalized coherent state. J. Phys. Chem. A, 121, 8757-8770 (2017),  http://dx.doi.org/10.1021/acs.jpca.7b07069

21. Lu Wang, Yuta Fujihashi, Lipeng Chen, and Yang Zhao. Finite temperature time-dependent variation with multiple Davydov states. J. Chem. Phys, 146, 124127 (2017), https://aip.scitation.org/doi/10.1063/1.4979017 

20. Zhongkai Huang, Lipeng Chen, Nengji Zhou, and Yang Zhao. Transient dynamics of a one dimensional Holstein polaron under the influence of an external electric field. Ann. Phys, 529, 1600367 (2017), http://dx.doi.org/10.1002/andp.201600367

19. Yuta Fujihashi, Lipeng Chen, Akihito Ishizaki, Junling Wang, and Yang Zhao. Effect of high-frequency modes on singlet fission dynamics. J. Chem. Phys. 146, 044101 (2017),  http://dx.doi.org/10.1063/1.4973981

18.  Zhongkai Huang, Lu Wang, Changqin Wu, Lipeng Chen, Frank Grossman, and Yang Zhao. Polaron dynamics with off-diagonal coupling: beyond the Ehrenfest approximation.  Phys. Chem. Chem. Phys. 19, 1655 (2017), http://dx.doi.org/10.1039/C6CP07107D

17. Lipeng Chen, Jing Lu, Guankui Long, Fulu Zheng, Jingping Zhang, and Yang Zhao. Optical and transport properties of single crystal rubrene: a theoretical study.  Chem. Phys481, 198-205 (2016), http://dx.doi.org/10.1016/j.chemphys.2016.05.012

16. Lipeng Chen, Maxim F. Gelin, Vladimir Y. Chernyak, Wolfgang Domcke, and Yang Zhao. Dissipative dynamics at conical intersections: Simulations with the hierarchy equations of motion method.  Faraday Discuss194, 61 (2016), http://dx.doi.org/10.1039/C6FD00088F

15. Frank Grossman, Michael Werther, Lipeng Chen, and Yang Zhao. Generalization of the Davydov Ansatz by squeezing.  Chem. Phys481, 99-107 (2016), http://dx.doi.org/10.1016/j.chemphys.2016.04.019

14. Tianrui Deng, Yiying Yan, Lipeng Chen, and Yang Zhao. Dynamics of the two spin spin boson model with a common bath. J. Chem. Phys144, 144102 (2016),  http://dx.doi.org/10.1063/1.4945390

13. Nengji Zhou, Lipeng Chen, Zhongkai Huang, Kewei Sun, Yoshitaka Tanimura, and Yang Zhao. Fast, accurate simulation of polaron dynamics and multidimensional spectroscopy by multiple Davydov trial states. J. Phys. Chem. A120, 1562-1576 (2016), http://dx.doi.org/10.1021/acs.jpca.5b12483

12. Rafael A. Molina, Enrique Benito Matias, Alejandro D. Somoza, Lipeng Chen, and Yang Zhao. Superradiance at the localization-delocalization crossover in tubular chlorosomes. Phys. Rev. E,93, 022414 (2016), http://dx.doi.org/10.1103/PhysRevE.93.022414

11. Alejandro Somoza Marquez, Lipeng Chen, Kewei Sun, and Yang Zhao. Probing ultrafast excitation energy transfer of the chlorosome with exciton-phonon variational dynamics.Phys. Chem. Chem. Phys18, 20298 (2016), http://dx.doi.org/10.1039/C5CP06491K

10.  Lu Wang, Lipeng Chen, Nengji Zhou, and Yang Zhao. Variational dynamics of the sub-Ohmic spin-boson model on the basis of multiple Davydov D1 states. J. Chem. Phys144, 024101 (2016), http://dx.doi.org/10.1063/1.4939144

9.  Yipeng An, Mengjun Zhang, Lipeng Chen, Congxin Xia, Tianxing Wang, Zhaoming Fu, Zhaoyong Jiao, and Guoliang Xu.  Spin dependent electronic transport properties of zigzag silicon carbon nanoribbon. RSC Adv5, 107136 (2015)., https://pubs.rsc.org/en/content/articlelanding/2015/RA/C5RA24276B 

8. Lipeng Chen, Prathamesh Shenai, Fulu Zheng, Alejandro Somoza, and Yang Zhao. Optimal Energy Transfer in Light Harvesting Systems. Molecules20, 15224-15272 (2015) (invited review), http://dx.doi.org/10.3390/molecules200815224

7. Lipeng Chen, Yang Zhao, and Yoshitaka Tanimura. Dynamics of a one-dimensional Holstein polaron with the hierarchical equations of motion approach. J. Phys. Chem. Lett6, 3110-3115 (2015), https://pubs.acs.org/doi/10.1021/acs.jpclett.5b01368

6. Nengji Zhou, Lipeng Chen, Dazhi Xu, Vladimir Chernyak, and Yang Zhao. Symmetry and the critical phase of the two-bath spin-boson model: Ground-state properties. Phys. Rev. B,91, 195129 (2015), http://dx.doi.org/10.1103/PhysRevB.91.195129

5. Lipeng Chen, Maxim F. Gelin, Wolfgang Domcke, and Yang Zhao. Theory of femtosecond coherent double-pump single-molecule spectroscopy: application to light harvesting complexes.J. Chem. Phys142, 164106 (2015), http://dx.doi.org/10.1063/1.4919240

4. Jing Lu, Yao Yao, Prathamesh M. Shenai, Lipeng Chen, and Yang Zhao. Elucidating the enhancement in optical properties of low band gap polymers by tuning the structure of alkyl side chains.  Phys. Chem. Chem. Phys17, 9541 (2015), http://dx.doi.org/10.1039/C4CP05657D

3. Nengji Zhou,  Lipeng Chen, Yang Zhao, Dima Mozyrsky, Vladimier Chernyak, and Yang Zhao. Ground state properties of sub-Ohmic spin-boson model with simultaneous diagonal and off-diagonal couplingPhys. Rev. B,90, 155135 (2014), http://dx.doi.org/10.1103/PhysRevB.90.155135

2. Shijie Xiong, Lipeng Chen, and Yang Zhao. Dephasing and dissipation in a source-drain model of light harvesting systems. ChemPhysChem15, 2859-2870 (2014), http://dx.doi.org/10.1002/cphc.201402013

1. Lipeng Chen, Qun Hui, Chuilin Wang, and Xianquan Jiang. Molecular simulation on the transport properties of poly[1-trimethylsilyl-1-propyne] for organic-vapor/permanent-gas separation. Fluid Phase Equilibria310, 142-149 (2011), https://www.sciencedirect.com/science/article/abs/pii/S0378381211003669?via%3Dihub