24377
当前位置: 首页   >  成果及论文
成果及论文

英文文章(加粗为近年代表作)

2024年

  1. Xinying Chen, Ye Liu, Lu Lu, et al. Establishment of a glucocorticoid inducible system for regulating somatic embryogenesis in Liriodendron hybrids. Forestry Research, 2024, 4: e006. doi: 10.48130/forres-0024-0003
  2. Junjie Zhu, Kaikai Zhang, Huiru Xiong, et al. H2O2 significantly affects Larix kaempferi × Larix olgensis somatic embryogenesis. International Journal of Molecular Sciences, 2024, 25: 669. doi: 10.3390/ijms25010669.
  3. Yang Yun, Jianchao Yin, Liming Zhu, et al. Genome-wide analysis of the Liriodendron chinense Hsf gene family under abiotic stress and characterization of the LcHsfA2a gene. International Journal of Molecular Sciences, 2024, 25: 2733. doi: 10.3390/ijms25052733
  4. Ye Lu, Lingfeng Hu, Long Yu, et al. Physiological and transcriptomic analysis revealed that the accumulation of reactive oxygen species caused the low temperature sensitivity of Liriodendron × sinoamericanum. Plant Science, 2024. doi: 10.1016/j.plantsci.2024.112020
  5. Linfeng Hu, Long Yu, Yuhao Weng, et al. Combined non-targeted metabolomic and transcriptomic analysis explains the biosynthetic pathway and differential accumulation of chlorogenic acid in the Liriodendron petal. Scientia Horticulturae, 2024, 328: 112791. doi: 10.1016/j.scienta.2023.112791
  6. Lin Xu, Ye Liu, Jiaji Zhang, et al. Genomic survey and expression analysis of LcARFs reveal multiple functions to somatic embryogenesis in Liriodendron. BMC Plant Biology, 2024, 24: 94. doi: 10.1186/s12870-024-04765-7
  7. Shichan He, Lin Xu, Weihuang Wu, et al. The identification and expression analysis of the Liriodendron chinense F-Box gene family. Plants, 2024, 13: 171. doi: 10.3390/plants13020171
  8. Tong Lu, Mengyuan Lin, Liming Zhu, et al. Unraveling the role of the Liriodendron Thioredoxin (TRX) gene family in an abiotic stress response. Plants, 2024, 13(12): 1674. doi: 10.3390/plants13121674
  9. Bojun Liao, Pengxiang Liang, Lu Tong, et al. The role of Liriodendron Dof gene family in abiotic stress response. Plants, 2024, 13(14): 2009. DOI: 10.3390/plants13142009
  10. Haoxian Qu, Shuang Liang, Lingfeng Hu, et al. Overexpression of Liriodendron hybrid LhGLK1 in Arabidopsis leads to excessive chlorophyll synthesis and improved growth. International Journal of Molecular Sciences, 2024, 25(13): 6968. doi: 10.3390/ijms25136968

2023年

  1. Lu Lu, Anna Holt, Xinying Chen, et al. miR394 enhances WUSCHEL-induced somatic embryogenesis in Arabidopsis thaliana. New Phytologist. 2023, 238(3): 1059-1072. doi: 10.1111/nph.18801
  2. Zhaodong Hao, Hua Wu, Renhua Zheng, et al. A plant peptide hormone phytosulfokine promotes somatic embryogenesis by maintaining redox homeostasis in Cunninghamia lanceolata. The Plant Journal, 2023, 113: 716-733. doi: 10.1111/tpj.16077
  3. Xiaofei Long, Jiaji Zhang, Dandan Wang, et al. Expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Liriodendron hybrids. Forestry Research, 2023, 3: 15. doi: 10.48130/FR-2023-0015.
  4. Xinru Wu, Junjie Zhu, Liming Zhu, et al. Genome-wide analyses of calmodulin and calmodulin-like proteins in the halophyte Nitraria sibirica reveal their involvement in response to salinity, drought and cold stress. International Journal of Biological Macromolecules, 2023, 253: 127442. DOI: 10.1016/j.ijbiomac.2023.127442
  5. Dandan Wang, Xiaoxiao Ma, Zhaodong Hao, et al. Overexpression of Liriodenron WOX5 in Arabidopsis leads to ectopic flower formation and altered root morphology. International Journal of Molecular Sciences. 2023, 24: 906. doi: 10.3390/ijms24020906
  6. Zhaodong Hao, Jinyu Shi, Hua Wu, et al. Phytosulfokine contributes to suspension culture of Cunninghamia lanceolata through its impact on redox homeostasis. BMC Plant Biology, 2023, 23: 480. doi: 10.1186/s12870-023-04496-1.
  7. Siqin Liu, Yuanlin Guan, Yuhao Weng, et al. Genome‑wide identification of the NAC gene family and its functional analysis in Liriodendron. BMC Plant Biology, 2023, 23: 415. doi: 10.1186/s12870-023-04415-4.
  8. Yuhao Weng, Xinying Chen, Zhaodong Hao, et al. Genome-wide analysis of the GRAS gene family in Liriodendron chinense reveals the putative function in abiotic stress and plant development. Frontiers in Plant Science, 2023, 14: 1211853. doi: 10.3389/fpls.2023.1211853
  9. Yuan Ji, Hua Wu, Xueyan Zheng et al. Full-length transcriptome sequencing and identification of Hsf genes in Cunninghamia lanceolata (Lamb.) Hook. Forests, 2023, 14(4): 684. doi: 10.3390/f14040684.
  10. Ya Chen, Hua Wu, Zhaodong Hao, et al. The identification and expression analysis of the Liriodendron chinense (Hemsl.) Sarg. SOD gene family. Forests. 2023, 14: 628. doi: 10.3390/f14030628.
  11. Chen Qiu, Jinhui Chen, Weihuang Wu, et al. Genome-wide analysis and abiotic stress-responsive patterns of COBRA-like gene family in Liriodendron chinense. Plants, 2023, 12, 1616. doi: 10.3390/plants12081616
  12. Yao Tang, Weihuang Wu, Xueyan Zheng, et al. AT-Hook transcription factors show functions in Liriodendron chinense under drought stress and somatic embryogenesis. Plants. 2023, 12: 1353. doi: 10.3390/plants12061353
  13. Guoxia Xue, Lingfeng Hu, Liming Zhu, et al. Genome-wide identification and expression analysis of CCO gene family in Liriodendron chinense. Plants, 2023, 12, 1975. doi: 10.3390/plants12101975.
  14. Xinru Wu, Junjie Zhu, Xinying Chen, et al. PYL family genes from Liriodendron chinense positively respond to multiple stresses. Plants, 2023, 12(14): 2609. doi: 10.3390/plants12142609.
  15. Xiao Sun, Liming Zhu, Zhaodong Hao, et al. Genome-wide identification and abiotic-stress-responsive expression of CKX gene family in Liriodendron chinense. Plants. 2023, 12: 2157. doi: 10.3390/plants12112157.
  16. Xiaoxiao Ma, DandanWang, Guoxia Xue, et al. Characterization of the Liriodendron chinense Pentatricopeptide Repeat (PPR) gene family and its role in osmotic stress response. Genes, 2023, 14, 1125. doi: 10.3390/genes14061125.
  17. Ziming Lian, Jingbo Zhang, Zhaodong Hao, et al. The glutathione peroxidase gene family in Nitraria sibirica: Genome-wide identification, classification, and gene expression analysis under stress conditions. Genes, 2023, 14, 950. doi: 10.3390/genes14040950.
  18. Zijian Cao, Qianxi Ma, Yuhao Weng, et al. Genome-wide identification and expression analysis of TPS gene family in Liriodendron chinense. Genes, 2023, 14, 770. doi: 10.3390/genes14030770
  19. Zijian Cao, Guoxia Xue, Lingfeng Hu, et al. Overexpression of the LcPIN2 and LtPIN2 gene in Arabidopsis thaliana promotes root elongation. Phyton-International Journal of Experimental Botany, 2023, 92(8), 2383-2397. doi: 10.32604/phyton.2023.029845.

2022年

  1. Meiping Li, Dan Wang, Xiaofei Long, et al., Agrobacterium-mediated genetic transformation of embryogenic callus in a Liriodendron hybrid (L. chinense x L. tulipifera). Frontiers in Plant Science, 2022, 13: 802128. DOI: 10.3389/fpls.2022.802128
  2. Lu Lu, Xinru Wu, Yao Tang, et al. Halophyte Nitraria billardieri CIPK25 promotes photosynthesis in Arabidopsis under salt stress. Frontiers in Plant Science, 2022, 13:1052463. DOI: 10.3389/fpls.2022.1052463
  3. Lu, Lu; Wu, Xinru; Wang, Pengkai et al., Halophyte Nitraria billardieri CIPK25 mitigates salinity-induced cell damage by alleviating H2O2 accumulation. Frontiers in Plant Science, 2022, 13: 961651. DOI: 10.3389/fpls.2022.961651
  4. Wang, Zhanjun; Cai, Qianwen; Xia, Haimeng et al., Genome-wide identification and comparative analysis of WOX genes in four Euphorbiaceae species and their expression patterns in Jatropha curcas. Frontiers in Genetics, 2022, 13: 878554. DOI: 10.3389/fgene.2022.878554
  5. Ji, Yuan; Zhu, Liming; Hao, Zhaodong et al., Exploring the Cunninghamia lanceolata (Lamb.) Hook Genome by BAC Sequencing. Frontiers in Bioengineering and Biotechnology, 2022, 10: 854130. DOI: 10.3389/fbioe.2022.854130
  6. Wu, Weihuang; Zhu, Sheng; Xu, Lin et al., Genome-wide identification of the Liriodendron chinense WRKY gene family and its diverse roles in response to multiple abiotic stress. BMC Plant Biology, 2022, 22(1): 25. DOI: 10.1186/s12870-021-03371-1
  7. Zhu, Liming; Fang, Hao; Lian Ziming et al., Genome-wide investigation and expression analysis of the Nitraria sibirica Pall. CIPK gene family. International Journal of Molecular Sciences, 2022, 23: 11599. DOI: 10.3390/ijms231911599
  8. Liu, Yuxin; Zhang, Jingbo; Li, Xinle et al., The identification and expression analysis of the Nitraria sibirica Pall. Auxin-Response Factor (ARF) gene family. International Journal of Molecular Sciences, 2022, 23:11122. DOI: 10.3390/ijms231911122
  9. Hu, Lingfeng; Fan, Ruifang; Wang, Pengkai et al., Identification, Phylogenetic and expression analyses of the AAAP gene family in Liriodendron chinense reveal their putative functions in response to organ and multiple abiotic stresses. International Journal of Molecular Sciences, 2022, 23(9): 4765. DOI: 10.3390/ijms23094765
  10. Chen, Tingting; Yang, Dingjie; Fan, Ruifang et al., gamma-Aminobutyric acid a novel candidate for rapid induction in somatic embryogenesis of Liriodendron hybrid. Plant Growth Regulation, 2022, 96(2): 293-302. DOI: 10.1007/s10725-021-00776-8
  11. Li, Rui; Pan, Yan; Hu, Lingfeng et al., PIN3 from Liriodendron may function in inflorescence development and root elongation. Forests, 2022, 13(4): 568. DOI: 10.3390/f13040568

2021年

  1. Sheng, Yu; Hao, Zhaodong; Peng, Ye et al., Morphological, phenological, and transcriptional analyses provide insight into the diverse flowering traits of a mutant of the relic woody plant Liriodendron chinense. Horticulture Research, 2021, 8(1): 174. DOI: 10.1038/s41438-021-00610-2
  2. Wang, Pengkai; Dong, Yini; Zhu, Liming et al., The role of gamma-aminobutyric acid in aluminum stress tolerance in a woody plant, Liriodendron chinense x tulipifera. Horticulture Research, 2021, 8(1): 80. DOI: 10.1038/s41438-021-00517-y

  3. Chen, Tingting; Sheng, Yu; Hao, Zhaodong et al., Transcriptome and proteome analysis suggest enhanced photosynthesis in tetraploid Liriodendron sino-americanum. Tree Physiology, 2021, 41(10): 1953-1971. DOI: 10.1093/treephys/tpab039

  4. Wang, Dan; Lu, Fengjuan; Wang, Pengkai et al., The Regulatory Roles of microRNAs and Associated Target Genes during Early Somatic Embryogenesis in Liriodendron Sino-Americanum. Phyton-International Journal of Experimental Botany, 2021, 90(5): 1445-1463. DOI: 10.32604/phyton.2021.015499
  5. Zhang, Jiaji; Weng, Yuhao; Ye, Daiquan et al., The complete chloroplast genome sequence of Casuarina equisetifolia. Mitochondrial DNA Part B-Resources, 2021, 6(10): 3046-3048. DOI: 10.1080/23802359.2021.1967803
  6. Zhu, Liming; Li, Mengjuan; Huo, Junnan et al., Overexpression of NtSOS2 From Halophyte Plant N. tangutorum Enhances Tolerance to Salt Stress in Arabidopsis. Frontiers in Plant Science, 2021, 12: 716855. DOI: 10.3389/fpls.2021.716855
  7. Wu, Weihuang; Zhu, Sheng; Zhu, Liming et al., Characterization of the Liriodendron Chinense MYB Gene Family and Its Role in Abiotic Stress Response. Frontiers in Plant Science, 2021, 12: 641280. DOI: 10.3389/fpls.2021.641280
  8. Hu, Lingfeng; Wang, Pengkai; Hao, Zhaodong et al., Gibberellin Oxidase Gene Family in L. chinense: Genome-Wide Identification and Gene Expression Analysis. International Journal of Molecular Sciences, 2021, 22(13): 7167. DOI: 10.3390/ijms22137167
  9. Wang, Dan; Lu, Fengjuan; Lu, Ye et al., Identification of miR397a and Its Functional Characterization in Callus Growth and Development by Regulating Its Target in Liriodendron. Forests, 2021, 12(7): 912. DOI: 10.3390/f12070912
  10. Zhu, Liming; Lu, Lu; Yang, Liming et al., The Full-Length Transcriptome Sequencing and Identification of Na+/H+ Antiporter Genes in Halophyte Nitraria tangutorum Bobrov. Genes, 2021, 12(6): 836. DOI: 10.3390/genes12060836
  11. Chen, Tingting; Zhou, Yanwei; Zhang, Jingbo et al., Integrative analysis of transcriptome and proteome revealed nectary and nectar traits in the plant-pollinator interaction of Nitraria tangutorum Bobrov. BMC Plant Biology, 2021, 21(1): 230. DOI: 10.1186/s12870-021-03002-9
  12. Wang, Zhanjun; Zhu, Jin; Yuan, Wenya et al., Genome-wide characterization of bZIP transcription factors and their expression patterns in response to drought and salinity stress in Jatropha curcas. International Journal of Biological Macromolecules, 2021, 181: 1207-1223. DOI: 10.1016/j.ijbiomac.2021.05.027
  13. Hao, Zhaodong; Zhang, Zhongjuan; Xiang, Daoquan et al., Conserved, divergent and heterochronic gene expression during Brachypodium and Arabidopsis embryo development. Plant Reproduction, 2021, 34(3): 207-224. DOI: 10.1007/s00497-021-00413-4
  14. Ali, Asif; Zhang, Jiaji; Zhou, Minmin et al., Chitosan Oligosaccharides Stimulate the Efficacy of Somatic Embryogenesis in Different Genotypes of the Liriodendron Hybrid. Forests, 2021, 12(5): 557. DOI: 10.3390/f12050557
  15. Wang, Zhanjun; Wang, Guiyi; Cai, Qianwen et al., Genomewide comparative analysis of codon usage bias in three sequenced Jatropha curcas. Journal of Genetics, 2021, 100(1): 20. DOI: 10.1007/s12041-021-01271-9
  16. Hu, Lingfeng; Wang, Pengkai; Long, Xiaofei et al., The PIN gene family in relic plant L. chinense: Genome-wide identification and gene expression profiling in different organizations and abiotic stress responses. Plant Physiology and Biochemistry, 2021, 162: 634-646. DOI: 10.1016/j.plaphy.2021.03.030
  17. Long, Xiaofei; Pan, Yan; Weng, Yuhao et al., The complete chloroplast genome of Clerodendrum japonicum (Thunb.) Sweet, a traditional Chinese medicinal plant. Mitochondrial DNA Part B-Resources, 2021, 6(3): 851-852. DOI: 10.1080/23802359.2021.1885316
  18. Lu, Lu; Chen, Xinying; Wang, Pengkai et al., CIPK11: a calcineurin B-like protein-interacting protein kinase from Nitraria tangutorum, confers tolerance to salt and drought in Arabidopsis. BMC Plant Biology, 2021, 21(1): 123. DOI: 10.1186/s12870-021-02878-x
  19. Weng, Yuhao; Ye, Daiquan; You, Yunfei et al., The complete chloroplast genome sequence of Sloanea sinensis. Mitochondrial DNA Part B-Resources, 2021, 6(2): 555-556. DOI: 10.1080/23802359.2021.1872453
  20. Guan, Yuanlin; Liu, Siqin; Wu, Weihuang et al., Genome-wide identification and cold stress-induced expression analysis of the CBF gene family in Liriodendron chinense. Journal of Forestry Research, 2021, 32(6): 2531-2543. DOI: 10.1007/s11676-020-01275-8
  21. He, Shichan; Hao, Zhaodong; Wang, Dandan et al., Formamide deionized accelerates the somatic embryogenesis of Cunninghamia lanceolata. Forest Systems, 2021, 30(3): e016. DOI: 10.5424/fs/2021303-18068
  22. Zhang, Jiaji; Long, Xiaofei; Weng, Yuhao et al., Efficient Evergreen Plant Regeneration of Cinnamomum japonicum Sieb. through in vitro Organogenesis. Phyton-International Journal of Experimental Botany, 2021, 90(2): 571-582. DOI: 10.32604/phyton.2021.014191

2020年

  1. Hao, Zhaodong; Liu, Siqin; Hu, Lingfeng et al., Transcriptome analysis and metabolic profiling reveal the key role of carotenoids in the petal coloration of Liriodendron tulipifera. Horticulture Research, 2020, 7(1): 70. DOI: 10.1038/s41438-020-0287-3
  2. Liu, Yang; Wang, Pengkai; Yan, Shan et al., Molecular Cloning and Functional Characterization of the DELLA Gene Family in Liriodendron Hybrids. Forests, 2020, 11(12): 1363. DOI: 10.3390/f11121363
  3. Wang, Dandan; Hao, Zhaodong; Long, Xiaofei et al., The Transcriptome of Cunninghamia lanceolata male/female cone reveal the association between MIKC MADS-box genes and reproductive organs development. BMC Plant Biology, 2020, 20(1): 508. DOI: 10.1186/s12870-020-02634-7

  4. Chen, Xinying; Wang, Pengkai; Zhao, Fangfang et al., The Liriodendron chinense MKK2 Gene Enhances Arabidopsis thaliana Salt Resistance. Forests, 2020, 11(11): 1160. DOI: 10.3390/f11111160
  5. Lu, Lu; Chen, Xinying; Zhu, Liming et al., NtCIPK9: A Calcineurin B-Like Protein-Interacting Protein Kinase From the Halophyte Nitraria tangutorum, Enhances Arabidopsis Salt Tolerance. Frontiers in Plant Science, 2020, 11: 1112. DOI: 10.3389/fpls.2020.01112
  6. Fu, Fang-Fang; Hao, Zhaodong; Wang, Pengkai et al., Genome Sequence and Comparative Analysis of Colletotrichum gloeosporioides Isolated from Liriodendron Leaves. Phytopathology, 2020, 110(7): 1260-1269. DOI: 10.1094/PHYTO-12-19-0452-R
  7. Hao, Zhaodong; Lv, Dekang; Ge, Ying et al., RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. Peerj Computer Science, 2020, : e251. DOI: 10.7717/peerj-cs.251
  8. Wang, Dandan; Guo, Yulin; Long, Xiaofei et al., Exogenous Spermidine Promotes Somatic Embryogenesis of Cunninghantia lanceolata by Altering the Endogenous Phytohormone Content. Phyton-International Journal of Experimental Botany, 2020, 89(1): 27-34. DOI: 10.32604/phyton.2020.08971
  9. Weng, Yuhao; Zhu, Liming; Ma, Yan et al., The Chloroplast Genome of Cerasus Campanulata Diverges from Other Prunoideae Genomes. Phyton-International Journal of Experimental Botany, 2020, 89(2): 375-384. DOI: 10.32604/phyton.2020.08831

2019年

  1. Chen, Jinhui; Hao, Zhaodong; Guang, Xuanmin et al., Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation. Nature Plants, 2019, 5(1): 18-25. DOI: 10.1038/s41477-018-0323-6
  2. Wu, Hua; Zheng, Renhua; Hao, Zhaodong et al., Cunninghamia lanceolata PSK Peptide Hormone Genes Promote Primary Root Growth and Adventitious Root Formation. Plants-Basel, 2019, 8(11): 520. DOI: 10.3390/plants8110520
  3. Zang, Mingyue; Su, Qian; Weng, Yuhao et al., Complete Chloroplast Genome of Fokienia hodginsii (Dunn) Henry et Thomas: Insights into Repeat Regions Variation and Phylogenetic Relationships in Cupressophyta. Forests, 2019, 10(7): 528. DOI: 10.3390/f10070528

  4. Long, Xiaofei; Weng, Yuhao; Liu, Siqin et al., Genetic Diversity and Differentiation of Relict Plant Liriodendron Populations Based on 29 Novel EST-SSR Markers. Forests, 2019, 10(4): 334. DOI: 10.3390/f10040334

2018年

  1. Cheng, Tielong; Hu, Liwei; Wang, Pengkai et al., Carbon Monoxide Potentiates High Temperature-Induced Nicotine Biosynthesis in Tobacco. International Journal of Molecular Sciences, 2018, 19(1): 188. DOI: 10.3390/ijms19010188

  2. Cheng, Tielong; Weng, Yuhao; Yang, Liming et al., The chloroplast genome of Cerasus campanulata (Maxim.) AN Vassiljeva. Mitochondrial DNA Part B-Resources, 2018, 3(1): 222-224. DOI: 10.1080/23802359.2018.1437799

  3. Cheng, Tielong; Shi, Jisen; Dong, Yini et al., Hydrogen sulfide enhances poplar tolerance to high-temperature stress by increasing S-nitrosoglutathione reductase (GSNOR) activity and reducing reactive oxygen/nitrogen damage. Plant Growth Regulation, 2018, 84(1): 11-23. DOI: 10.1007/s10725-017-0316-x

  4. Lu, Lu; Li, Xia; Hao, Zhaodong et al., Phylogenetic studies and comparative chloroplast genome analyses elucidate the basal position of halophyte Nitraria sibirica (Nitrariaceae) in the Sapindales. Mitochondrial DNA Part A, 2018, 29(5): 745-755. DOI: 10.1080/24701394.2017.1350954

2017年

  1. Zhou, Xiaohong; Zheng, Renhua; Liu, Guangxin et al., Desiccation Treatment and Endogenous IAA Levels Are Key Factors Influencing High Frequency Somatic Embryogenesis in Cunninghamia lanceolata (Lamb.) Hook. Frontiers in Plant Science, 2017, 8: 2054. DOI: 10.3389/fpls.2017.02054

  2. Guo, Zhongfu; Tang, Guosheng; Zhou, Yonghong et al., Fabrication of Sustained-release CA-PU Coaxial Electrospun Fiber Membranes for Plant Grafting Application. Carbohydrate Polymers, 2017, 169: 198-205. DOI: 10.1016/j.carbpol.2017.04.020

  3. Huo, Ailing; Chen, Zhenyu; Wang, Pengkai et al., Establishment of transient gene expression systems in protoplasts from Liriodendron hybrid mesophyll cells. Plos One, 2017, 12(3): e0172475. DOI: 10.1371/journal.pone.0172475

2016年

  1. Wang, Pengkai; Cheng, Tielong; Lu, Mengzhu et al., Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis. Frontiers in Plant Science, 2016, 7: 1383. DOI: 10.3389/fpls.2016.01383

  2. Hao, Zhaodong; Cheng, Tielong; Zheng, Renhua et al., The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae. Plos One, 2016, 11(8): e0161809. DOI: 10.1371/journal.pone.0161809

  3. Dolzblasz, Alicja; Nardmann, Judith; Clerici, Elena et al., Stem Cell Regulation by Arabidopsis WOX Genes. Molecular Plant, 2016, 9(7): 1028-1039. DOI: 10.1016/j.molp.2016.04.007

  4. Zheng, Weiwei; Chen, Jinhui; Hao, Zhaodong et al., Comparative Analysis of the Chloroplast Genomic Information of Cunninghamia lanceolata (Lamb.) Hook with Sibling Species from the Genera Cryptomeria D. Don, Taiwania Hayata, and Calocedrus Kurz. International Journal of Molecular Sciences, 2016, 17(7): 1084. DOI: 10.3390/ijms17071084

  5. Zhou, Yanwei; Li, Meiping; Zhao, Fangfang et al., Floral Nectary Morphology and Proteomic Analysis of Nectar of Liriodendron tulipifera Linn.. Frontiers in Plant Science, 2016, 7: 826. DOI: 10.3389/fpls.2016.00826

  6. Cheng, Tielong; Chen, Jinhui; Abd Allah, E. F. et al., Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress (vol 242, pg 1361, 2015). Planta, 2016, 243(4): 1081-1081. DOI: 10.1007/s00425-016-2494-6

  7. Xu, Yang; Zheng, Renhua; Wang, Zhanjun et al., Identification and characterization of genic microsatellites in Cunninghamia lanceolata (Lamb.) Hook (Taxodiaceae). Archives of Biological Sciences, 2016, 68(2): 417-425. DOI: 10.2298/ABS150608124X

2015年及以前

  1. Cheng, Tielong; Chen, Jinhui; Abd Allah, E. F. et al., Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress. Planta, 2015, 242(6): 1361-1390. DOI: 10.1007/s00425-015-2374-5

  2. Chen, Jin-Hui; Lin, Sen-Sen; Wang, Wei-Xin et al., The extract, LXB-1, from the barks of Liriodendron x hybrid, induced apoptosis via Akt, JNK and ERK1/2 pathways in A549 lung cancer cells. Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences, 2015, 70(11-12): 305-311. DOI: 10.1515/znc-2015-0126

  3. Li, Xia; Su, Qian; Zheng, Renhua et al., ClRTL1 Encodes a Chinese Fir RNase III-Like Protein Involved in Regulating Shoot Branching. International Journal of Molecular Sciences, 2015, 16(10): 25691-25710. DOI: 10.3390/ijms161025691

  4. Zhen, Yan; Li, Chunying; Chen, Jinhui et al., Proteomics of embryogenic and non-embryogenic calli of a Liriodendron hybrid. Acta Physiologiae Plantarum, 2015, 37(10): 211. DOI: 10.1007/s11738-015-1963-z

  5. Chen, Jinhui; Hao, Zhaodong; Xu, Haibin et al., The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Frontiers in Plant Science, 2015, 6: 447. DOI: 10.3389/fpls.2015.00447

  6. Shen, Jie; Xu, Jin; Chen, Jinhui et al., Cell synchronization and isolation of chromosomes from Chinese fir root tips for flow cytometric analysis. Biotechnology Letters, 2015, 37(6): 1309-1314. DOI: 10.1007/s10529-015-1800-x

  7. Tan, Xiaojuan; Yang, Dongting; Yang, Guoxu et al., The investigation of inhibiting quorum sensing and methicillin-resistant Staphylococcus aureus biofilm formation from Liriodendron hybrid. Pakistan Journal of Pharmaceutical Sciences, 2015, 28(3): 903-908. 

  8. Yang, Dong-Ting; Lin, Sen-Sen; Chen, Jin-Hui et al., (+)- and (-)-liriodenol, a pair of novel enantiomeric lignans from Liriodendron hybrid. Bioorganic & Medicinal Chemistry Letters, 2015, 25(9): 1976-1978. DOI: 10.1016/j.bmcl.2015.03.015

  9. Cheng, Tielong; Chen, Jinhui; Zhang, Jingbo et al., Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance. Frontiers in Plant Science, 2015, 6: 30. DOI: 10.3389/fpls.2015.00030

  10. Zhen, Yan; Chen, Jinhui; Chen, Qin et al., Elemental analyses of calli and developing soamatic embryo of hybrid Liriodendron. Pakistan Journal of Botany, 2015, 47(1): 189-196. 

  11. Li, Xiong; Yang, Yunqiang; Sun, Xudong et al., Comparative Physiological and Proteomic Analyses of Poplar (Populus yunnanensis) Plantlets Exposed to High Temperature and Drought. Plos One, 2014, 9(9): e107605. DOI: 10.1371/journal.pone.0107605

  12. Bian, Liming; Shi, Jisen; Zheng, Renhua et al., Genetic parameters and genotype-environment interactions of Chinese fir (Cunninghamia lanceolata) in Fujian Province. Canadian Journal of Forest Research, 2014, 44(6): 582-592. DOI: 10.1139/cjfr-2013-0427

  13. Wang, Pengkai; Cheng, Tielong; Wu, Shuang et al., Phylogeny and Molecular Evolution Analysis of PIN-FORMED 1 in Angiosperm. Plos One, 2014, 9(2): e89289. DOI: 10.1371/journal.pone.0089289

  14. Wang, Zhanjun; Chen, Jinhui; Liu, Weidong et al., Transcriptome Characteristics and Six Alternative Expressed Genes Positively Correlated with the Phase Transition of Annual Cambial Activities in Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook). Plos One, 2013, 8(8): e71562. DOI: 10.1371/journal.pone.0071562

  15. Shi, Jie; Dai, Xiaogang; Chen, Yingnan et al., Discovery and experimental analysis of microsatellites in an oil woody plant Camellia chekiangoleosa. Plant Systematics and Evolution, 2013, 299(7): 1387-1393. DOI: 10.1007/s00606-013-0814-x

  16. Chen, Jinhui; Cheng, Tielong; Wang, Pengkai et al., Genome-wide bioinformatics analysis of DELLA-family proteins from plants. Plant Omics, 2013, 6(3): 201-207. 

  17. Chen, Jin-Hui; Yang, Guo-Xu; Ding, Qiang et al., In vitro tumor cytotoxic activities of extracts from three Liriodendron plants. Pakistan Journal of Pharmaceutical Sciences, 2013, 26(2): 233-237. 

  18. Xia Bing; Dong Chen; Zhang WenYi et al., Highly efficient uptake of ultrafine mesoporous silica nanoparticles with excellent biocompatibility by Liriodendron hybrid suspension cells. Science China-Life Sciences, 2013, 56(1): 82-89. DOI: 10.1007/s11427-012-4422-8

  19. Xu, Haibin; Luo, Xiang; Qian, Jun et al., FastUniq: A Fast De Novo Duplicates Removal Tool for Paired Short Reads. Plos One, 2012, 7(12): e52249. DOI: 10.1371/journal.pone.0052249

  20. Chen, Jinhui; Cheng, Tielong; Wang, Pengkai et al., Salinity-induced changes in protein expression in the halophytic plant Nitraria sphaerocarpa. Journal of Proteomics, 2012, 75(17): 5226-5243. DOI: 10.1016/j.jprot.2012.06.006

  21. Li, Tingting; Chen, Jinhui; Qiu, Shuai et al., Deep Sequencing and Microarray Hybridization Identify Conserved and Species-Specific MicroRNAs during Somatic Embryogenesis in Hybrid Yellow Poplar. Plos One, 2012, 7(8): e43451. DOI: 10.1371/journal.pone.0043451

  22. Bai, Xue-gui; Chen, Jin-hui; Kong, Xiang-xiang et al., Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radical Biology and Medicine, 2012, 53(4): 710-720. DOI: 10.1016/j.freeradbiomed.2012.05.042

  23. Yang, Yunqiang; Chen, Jinhui; Liu, Qi et al., Comparative Proteomic Analysis of the Thermotolerant Plant Portulaca oleracea Acclimation to Combined High Temperature and Humidity Stress. Journal of Proteome Research, 2012, 11(7): 3605-3623. DOI: 10.1021/pr300027a

  24. Chen, Jinhui; Tian, Lin; Xu, Huifang et al., Cold-induced changes of protein and phosphoprotein expression patterns from rice roots as revealed by multiplex proteomic analysis. Plant Omics, 2012, 5(2): 194-199. 

  25. Chen, Jinhui; Shi, Jisen; Tian, Dagang et al., Improved protein identification using a species- specific protein/peptide database derived from expressed sequence tags. Plant Omics, 2011, 4(5): 257-263. 

  26. Bai, Xuegui; Yang, Liming; Tian, Meihua et al., Nitric Oxide Enhances Desiccation Tolerance of Recalcitrant Antiaris toxicaria Seeds via Protein S-Nitrosylation and Carbonylation. Plos One, 2011, 6(6): e20714. DOI: 10.1371/journal.pone.0020714


中文文章

  1. 郝兆东,施季森,陈金慧.类胡萝卜素介导的植物花色调控机制研究进展[J]. 南京林业大学学报(自然科学版),2022,46(6):73-82.

  2. 王占军,丁亮,蔡倩文,李杰,吴子琦,姚怀桐,王悦,焦春燕,欧祖兰,徐忠东,施季森,陈金慧.3种木薯全基因组的密码子偏好性模式与变异来源比较[J].应用与环境生物学报,2021,27(04):1013-1021.

  3. 吴伟煌,肖保荣,黄世清,傅火勇,盛宇,陈金慧.杂交鹅掌楸F1代生长性状的基因型与环境互作效应分析[J].分子植物育种,2021:1-13.

  4. 李春映,殷梓苡,陈金慧,施季森,甄艳.杂交鹅掌楸胚性能力获得磷酸化蛋白质组探讨[J].分子植物育种,2020,18(01):1-10.

  5. 肖保荣,吴伟煌,黄世清,陈伟,盛宇,陈金慧.杂交鹅掌楸的生长调查与家系选择[J].江苏农业科学,2019,47(13):183-187.

  6. 陆叶,龙晓飞,王鹏凯,陈金慧,施季森.基于RAD-seq技术的鹅掌楸基因组SNP标记开发[J].南京林业大学学报(自然科学版),2019,43(04):1-7.

  7. 陈婷婷,王鹏凯,张稼霁,施季森,成铁龙,陈金慧.脱落酸和玉米素结合使用对杂交鹅掌楸体胚分化及发育的影响[J].林业科学,2019,55(03):64-71.

  8. 郑薇玮,陈金慧,施季森.叶绿体全基因组系统进化分析资源平台的构建[J].赤峰学院学报(自然科学版),2018,34(05):22-23.

  9. 肖保荣,黄世清,郑伟,陈怀梁,盛宇,陈金慧.不同亚美马褂木家系在鲁中地区生长性状分析[J].分子植物育种,2018,16(16):5432-5436.

  10. 周艳威,陈金慧,鲁路,成铁龙,杨立明,施季森.杂交鹅掌楸体胚再生植株淹水胁迫下叶片超微结构及光合特性变化[J].林业科学,2018,54(03):19-28.

  11. 成铁龙,彭冶,施季森,陈金慧,杨立明.低温胁迫对杂交鹅掌楸幼苗活性氧和活性氮代谢的影响[J].江苏农业科学,2017,45(24):99-102.

  12. 霍爱玲,陈金慧,甄艳,夏兵,陈桢雨,施季森.有机纳米材料在植物核酸递送中的研究进展[J].江苏农业科学,2017,45(22):1-4.

  13. 成铁龙,孟岩,陈金慧,施季森.茉莉酸甲酯对杂交鹅掌楸体胚发育的影响[J].南京林业大学学报(自然科学版),2017,41(06):41-46.

  14. 韦如萍,胡德活,陈金慧,施季森.低磷胁迫下杉木无性系根系形态及养分利用响应研究[J].南京林业大学学报(自然科学版),2018,42(02):1-8.

  15. 徐惠芳,金磊磊,徐璇,许梦璐,张芳超,郑晨,陈金慧.中国鹅掌楸纤维素合酶的CRISPR/Cas9基因敲除系统的gRNA表达载体构建[J].分子植物育种,2017,15(06):2195-2199.

  16. 周艳威,李美平,鲁路,陆叶,陈婷婷,陈金慧,施季森.杂交鹅掌楸苗期NaCl胁迫响应研究[J].分子植物育种,2017,15(02):735-743.

  17. 吴华,苏倩,陈金慧,匡华林,施季森,成铁龙.水杨酸对紫外线胁迫下杉木组培苗的影响[J].江苏农业科学,2016,44(09):207-210.

  18. 霍爱玲,陈金慧,甄艳,夏兵,陈桢雨,施季森.无机纳米颗粒在植物转化中的应用[J].南京林业大学学报(自然科学版),2016,40(06):162-166.

  19. 郑薇玮,陈金慧,郝兆东,施季森.杉木等5种针叶树叶绿体密码子偏好性分析[J].分子植物育种,2016,14(05):1091-1097.

  20. 吴华,闫姗,陈金慧,郑仁华,施季森,成铁龙.紫外线对杉木体胚再生植株的影响[J].林业科学研究,2015,28(06):839-843.

  21. 鲁路,陆叶,盛宇,郑晨,施季森,陈金慧.不同活性炭对杂交鹅掌楸体胚发生的影响[J].南京林业大学学报(自然科学版),2016,40(02):59-64.

  22. 赵亚琦,吕言,张文军,魏继福,陈金慧,施季森,成铁龙.鹅掌楸树叶和树皮提取物的抑菌活性研究[J].南京林业大学学报(自然科学版),2016,40(02):76-80.

  23. 曲弈,吴华,施季森,郑仁华,王鹏凯,陆叶,陈金慧.杉木体胚再生植株低温胁迫的响应机制[J].林业科技开发,2014,28(05):49-52.

  24. 鲁路,张景波,陈金慧,周艳威,成铁龙.比拉底白刺苗期抗旱性分析[J].南京林业大学学报(自然科学版),2015,39(06):51-55.

  25. 陈菊移,王鹏凯,陈金慧,施季森.植物茎尖分生组织中的干细胞调控机制研究进展[J].江苏农业科学,2014,42(08):11-14.

  26. 赵亚琦,成铁龙,施季森,王新民,徐阳,刘伟东,陈金慧.鹅掌楸属SRAP分子标记体系优化及遗传多样性分析[J].林业科学,2014,50(07):37-43.

  27. 姚丹静,曲弈,陈金慧.脯氨酸对杉木愈伤组织超低温冷冻保存的影响[J].湖北林业科技,2014,43(03):30-31+58.

  28. 徐阳,陈金慧,王颖,赵亚琦,王新民,郑仁华,施季森.杉木SSR-PCR体系优化[J].林业科技开发,2014,28(01):15-20.

  29. 徐阳,陈金慧,赵亚琦,王颖,王新民,刘伟东,施季森,郑仁华,欧阳磊,张志才,黄金华,叶代全,方扬辉.杉木地理种源的EST-SSR分子标记变异研究[J].南京林业大学学报(自然科学版),2014,38(01):1-8.

  30. 徐阳,陈金慧,李亚,洪舟,王颖,赵亚琦,王新民,施季森.杉木EST-SSR与基因组SSR引物开发[J].南京林业大学学报(自然科学版),2014,38(01):9-14.

  31. 王新民,郑仁华,陈金慧,赵亚琦,徐阳,王颖,施季森.杉木SRAP-PCR体系优化[J].南京林业大学学报(自然科学版),2014,38(01):15-20.

  32. 张艳娟,成铁龙,周艳威,吴霜,王鹏凯,施季森,陈金慧.PSK对杂交鹅掌楸悬浮培养细胞生长的影响[J].南京林业大学学报(自然科学版),2014,38(01):171-174.

  33. 甄艳,陈金慧,施季森.植物体细胞胚发生胚性潜势恢复的研究进展[J].南京林业大学学报(自然科学版),2013,37(06):147-152.

  34. 周小红,张元莉,李美平,赵芳芳,陈金慧,郑仁华,肖晖,黄金华,张志才,李勇,郑雪燕,施季森.杉木成年优树组培生根研究[J].南京林业大学学报(自然科学版),2013,37(06):169-172.

  35. 刘伟东,陈金慧,周艳威,赵亚琦,施季森.湿加松胚性愈伤组织的程序降温技术研究[J].南京林业大学学报(自然科学版),2013,37(06):1-5.

  36. 欧阳磊,陈金慧,郑仁华,徐阳,林宇峰,黄金华,叶代全,方扬辉,施季森.杉木育种群体SSR分子标记遗传多样性分析[J].南京林业大学学报(自然科学版),2014,38(01):21-26.

  37. 王鹏凯,施季森,张艳娟,吴霜,陈金慧.植物的胚形态建成及其基因调控机制研究进展[J].南京林业大学学报(自然科学版),2013,37(05):134-138.

  38. 贾波,徐海滨,徐阳,龙晓飞,陈金慧,施季森.鹅掌楸Genomic-SSR反应体系优化[J].林业科学研究,2013,26(04):506-510.

  39. 周小红,周艳威,张元莉,施季森,郑仁华,陈金慧.杉木成年优良无性系的不定芽增殖研究[J].林业科学研究,2013,26(03):299-304.

  40. 夏兵,董琛,张文一,陆叶,陈金慧,施季森.杂交鹅掌楸悬浮细胞高效摄取具有良好生物相容性的超微介孔氧化硅纳米颗粒[J].中国科学:生命科学,2013,43(02):177-184.

  41. 王鹏凯,吕伟光,胡雪怡,陈金慧,施季森.北美鹅掌楸原生质体的分离与培养[J].西北植物学报,2013,33(02):254-260.

  42. 陈金慧,张艳娟,吴亚云,王鹏凯,王光萍,施季森.植物磺肽素在杂交鹅掌楸体胚发生中的作用[J].林业科学,2013,49(02):33-38.

  43. 李雪萍,赵胜杰,边黎明,陈金慧,施季森,张卉.杂交鹅掌楸体胚苗及亲本种造林比较试验[J].江苏林业科技,2012,39(06):5-7.

  44. 李雪萍,边黎明,陈金慧,施季森.整地方式对杂交鹅掌楸体胚苗及其亲本幼林生长的影响[J].林业科技开发,2012,26(06):59-61.

  45. 刘光欣,陈金慧,孙杰,愈天驰,施季森.杂种鹅掌楸体胚苗根尖染色体核型分析[J].南京林业大学学报(自然科学版),2012,36(06):13-16.

  46. 吕运舟,郑佳,陈金慧,施季森.参与杉木次生壁合成调控的转录因子ClMYB4的克隆及在大肠杆菌中表达[J].分子植物育种,2012,10(05):512-519.

  47. 陈金慧,王鹏凯,张艳娟,施季森.植物根尖分生组织干细胞调控模式[J].南京林业大学学报(自然科学版),2012,36(04):127-132.

  48. 史洁,尹佟明,管宏伟,戴晓港,陈金慧,施季森.油茶基因组微卫星特征分析[J].南京林业大学学报(自然科学版),2012,36(02):47-51.

  49. 费宝丽,李雯,燕庆玲,龙剑英,夏兵,陈金慧.脱氢枞基-稀土配合物的合成、表征及其与DNA的相互作用[J].林产化学与工业,2012,32(01):1-7.

  50. 陈金慧,张艳娟,李婷婷,王鹏凯,王光萍,施季森.杂交鹅掌楸体胚发生过程的起源及发育过程[J].南京林业大学学报(自然科学版),2012,36(01):16-20.

  51. 施季森,王占军,陈金慧.木本植物全基因组测序研究进展[J].遗传,2012,34(02):145-156.

  52. 夏兵,董琛,陆叶,陈金慧,施季森.纳米材料在植物细胞生物学研究中的应用[J].南京林业大学学报(自然科学版),2011,35(06):121-126.

  53. 郭程程,张金池,尤录祥,陈金慧,王如岩.榉树的硬枝扦插试验[J].林业科技开发,2011,25(04):101-104.

  54. 董琛,施季森,陆叶,陈金慧,夏兵.聚乙二醇介导鹅掌楸悬浮细胞与CdSe/ZnS量子点纳米颗粒共孵育的互作特征[J].中国科学:生命科学,2011,41(06):494-501.

  55. 王占军,陈金慧,施季森.植物干细胞中WUS/CLV反馈调控机制的研究进展[J].林业科学,2011,47(04):159-165.

  56. 吴淳,陈金慧,李婷婷,施季森.体胚发生相关cDNA文库构建及在林木中的应用[J].林业科技开发,2010,24(03):1-5.

  57. 吴淳,陈金慧,李婷婷,施季森.杂交鹅掌楸体胚发生中胚性细胞总RNA提取[J].分子植物育种,2010,8(02):393-398.

  58. 陈志,陈金慧,李婷婷,吴淳,施季森.杂交鹅掌楸转双价抗病基因影响因子研究[J].分子植物育种,2007,(04):588-592.

  59. 李婷婷,施季森,陈金慧,边黎民,陈志,吴淳.悬浮培养条件下体细胞胚发育的同步化控制[J].分子植物育种,2007,(03):436-442.

  60. 陈金慧,施季森.新教师上好植物细胞工程课程的几点思考[J].生物学杂志,2007,(02):68-69.

  61. 陈志,陈金慧,边黎明,李婷婷,吴淳,施季森.杂交鹅掌楸胚性细胞悬浮系的建立[J].分子植物育种,2007,(01):137-140.

  62. 陈伟,施季森,陈金慧,汪长水,刘希华.西南桦不同种源外植体组织培养技术[J].南京林业大学学报(自然科学版),2007,(01):27-30.

  63. 陈金慧,施季森,赵治芬,龙伟.杂交鹅掌楸体胚系统的遗传稳定性研究[J].南京林业大学学报(自然科学版),2006,(06):99-101.

  64. 陈金慧,施季森.研究生植物细胞工程课程教学探索[J].黑龙江生态工程职业学院学报,2006,(06):79-80.

  65. 陈伟,施季森,龙伟,陈金慧.光皮桦离体培养形态建成过程中内源激素含量的变化[J].南京林业大学学报(自然科学版),2006,(03):67-70.

  66. 陈金慧,施季森,甘习华,彭冶.杂交鹅掌楸体胚发生过程中ATP酶活性的超微细胞化学定位[J].西北植物学报,2006,(01):12-17.

  67. 陈金慧,施季森,甘习华,诸葛强,黄敏仁.杂交鹅掌楸体细胞胚胎发生的扫描电镜观察[J].南京林业大学学报(自然科学版),2005,(01):75-78.

  68. 陈金慧,施季森,诸葛强,黄敏仁.杂交鹅掌楸体细胞胚胎发生研究[J].林业科学,2003,(04):49-53+177.

  69. 陈金慧,施季森,诸葛强,黄敏仁.植物体细胞胚胎发生机理的研究进展[J].南京林业大学学报(自然科学版),2003,(01):75-80.

  70. 陈金慧,施季森,诸葛强.杂交鹅掌楸的不定芽诱导及植株再生[J].植物生理学通讯,2002,(05):459.

  71. 陈金慧,施季森.鹅掌楸组培苗的生根及移栽技术[J].林业科技开发,2002,(05):21-22.

  72. 陈金慧,王洪云,诸葛强,施季森.林木体胚发生技术进展[J].林业科技开发,2000,(03):9-11.


专  利

  1. CN115735769B,一种通过控制氧化还原稳态来促进杉木体胚发生的方法,公开日:2023-09-08
  2. CN114807166B,一种鹅掌楸转录因子LcbHLH02399基因及其表达蛋白和应用,公开日:2023-06-16
  3. CN114958869B,杂交鹅掌楸分生组织生长关键基因LhWOX4及其应用,公开日:2023-06-02

  4. CN115362934B,一种利用秋水仙素诱导四倍体杂交鹅掌楸种南林金森E1号的方法,公开日:2023-05-02

  5. CN114181884B,一种调控植物体细胞胚胎发生的方法,公开日:2022-10-28

  6. CN112980856B,一种唐古特白刺NtSOS3基因及其表达蛋白和应用,公开日:2022-06-10

  7. CN110301356B,一种利用γ-氨基丁酸促进杂交鹅掌楸体胚发生的培养基及其应用,公开日:2022-03-01

  8. CN112725356B,一种鹅掌楸转录因子LcbHLH16421基因及其应用,公开日:2022-02-01

  9. CN112746079B,一种鹅掌楸转录因子LcbHLH52基因及其应用,公开日:2021-10-22
  10. CN110896859B,一种利用水杨酸促进杉木体胚发生的方法,公开日:2021-06-18
  11. CN110540994B,杂交鹅掌楸主根生长关键基因LhWOX5基因及其表达蛋白和应用 ,公开日:2021-04-02
  12. CN109929852B,杂交鹅掌楸体胚胚根伸长关键基因LhHB9及其应用 ,公开日:2021-03-23
  13. CN111118032B,杂交鹅掌楸LhWOX1基因的用途,公开日:2021-01-12
  14. CN110915653B,一种利用氨基寡糖素促进杉木体胚发生的方法,公开日:2020-12-15
  15. CN111118033B,一种杂交鹅掌楸LhAP2L基因及其应用,公开日:2020-12-15
  16. CN110791506B,一种唐古特白刺NtCIPK11基因及其表达蛋白和应用,公开日:2020-12-04
  17. CN108660250B,一种鹅掌楸林分后代树种类型的鉴定方法,公开日:2020-01-10
  18. CN107739738B,一种鹅掌楸纤维素合酶基因LcCESA1及其表达蛋白和应用,公开日:2019-12-31
  19. CN106834315B,一种比拉底白刺NbCIPK25基因及其表达蛋白和应用,公开日:2019-10-18
  20. CN108812312B,一种柳杉茎段愈伤组织诱导及植株再生培养方法,公开日:2019-09-27
  21. CN108660196B,一种杂交鹅掌楸亲缘关系的鉴定方法,公开日:2019-09-10
  22. CN108754005B,一种鹅掌楸基因组的SNP标记的筛选方法,公开日:2019-08-20
  23. CN109089881B,一种耐寒天竺桂的不定芽诱导及增殖和植株再生方法,公开日:2019-08-09
  24. CN106497563B,一种碳量子点纳米材料及其制备方法和应用,公开日:2019-07-23
  25. CN106222181B,杉木植物磺肽素CLPSK2基因及其应用,公开日:2019-05-07
  26. CN106244595B,杉木植物磺肽素CLPSK1基因及其应用,公开日:2019-05-07
  27. CN106962191B,一种利用茉莉酸甲酯进行杂交鹅掌楸体胚发生的方法,公开日:2019-02-22
  28. CN106688895B,一种利用水杨酸进行杂交鹅掌楸体胚发生的方法,公开日:2018-11-27
  29. CN106305428B,一种翅果油树定芽增殖与植株再生方法,公开日:2018-11-02
  30. CN105219783B,一种杂交鹅掌楸PIN1基因及其应用,公开日:2018-04-17
  31. CN106212287B,一种利用去离子甲酰胺进行杂交鹅掌楸体胚纯固体培养植株再生方法,公开日:2018-04-03
  32. CN105219784B,一种杂交鹅掌楸LhRGL1基因及其应用,公开日:2018-03-13
  33. CN106069785B,一种杂交鹅掌楸体胚纯固体培养植株再生方法,公开日:2017-11-24
  34. CN104293808B,一种杂交鹅掌楸LhMKK2基因及其表达蛋白和应用,公开日:2017-06-30
  35. CN104498514B,一种唐古特白刺NtCIPK9基因及其表达蛋白和应用,公开日:2017-03-01
  36. CN104004772B,一种杂交鹅掌楸LhPIN3基因及其应用,公开日:2016-02-24
  37. CN103229693B,一种杉木优良个体的选择方法,公开日:2015-03-25
  38. CN103088059B,一种杂交鹅掌楸高效遗传转化方法,公开日:2015-02-25
  39. CN103088058B,一种杉木遗传转化方法,公开日:2014-10-22
  40. CN103333901B,一种杂交鹅掌楸LhWOX1基因及其应用,公开日:2014-10-22
  41. CN102657152B,一种胚性材料的超低温冷冻保存方法,公开日:2014-06-25
  42. CN103070074B,一种杉木体细胞胚胎发生方法,公开日:2014-06-25
  43. CN102640745B,一种胚性材料的超低温冷冻保存复苏方法,公开日:2014-05-21
  44. CN102335234B,一种鹅掌楸的生物碱提取物及其提取方法和应用,公开日:2013-11-13
  45. CN102335233B,一种鹅掌楸的多酚类提取物及其提取方法和应用,公开日:2013-08-07
  46. CN102250944B,一种CdSe/ZnS量子点与植物细胞的共孵育方法,公开日:2012-10-31
  47. CN102217539B,一种杉木无性系离体生根培养方法,公开日:2012-10-10
  48. CN102217534B,一种福建山樱花体细胞胚胎发生方法,公开日:2012-07-25
  49. CN101849505B,诱导马尾松未成熟种子胚性胚柄细胞团再生植株的方法,公开日:2012-07-18
  50. CN102037896B,杂交鹅掌楸体胚发生同步化控制方法,公开日:2012-04-11
  51. CN101983556B,杉木体细胞胚胎发生及植株再生方法,公开日:2011-11-30
  52. CN101112178B,杂交鹅掌楸无性系营养体悬浮细胞系诱导体细胞胚胎发生与植株再生方法,公开日:2011-03-09
  53. CN27264708U,一种鹅掌楸用人工授粉架,公开日:2022-08-23
  54. CN209517828U,一种生物信息学实验室主控机房的温度控制装置,公开日:2019-10-18
  55. CN208922145U,一种鹅掌楸育苗温室的温度和光源联动控制装置,公开日:2019-05-31
  56. CN208258521U,一种温室培育装置,公开日:2018-12-21
  57. CN208258565U,一种分离式温室培育架,公开日:2018-12-21
  58. CN208258576U,一种培育温室遮阳装置,公开日:2018-12-21
  59. CN208191555U,一种温室培育架固定装置,公开日:2018-12-07
  60. CN208090488U,一种温室培育光照装置,公开日:2018-11-13